
A Social-Aware Service Recommendation Approach for Mashup Creation

Wenxing Xu1, Jian Cao1*, Liang Hu1

1Department of Computer Science and Engineering
1Shanghai Jiao Tong University

1Shanghai, China
1{wenxingxu, cao-jian, lianghu, li-ml}@sjtu.edu.cn

Jie Wang2, Minglu Li1

2Department of Civil and Environmental Engineering
2Stanford University

2 CA 94305, USA
2jiewang@stanford.edu

Abstract—Mashup is a user-centric approach to create value-
added new services by utilizing and recombining existing
service components. However, as services become increasingly
more spontaneous and prevalent on the Internet, finding
suitable services from which to develop a mashup based on
users’ explicit and implicit requirements remains a daunting
task. Several approaches already exist for recommending
specific services for users but they are limited to proposing
only services with similar functionality. In order to recommend
a set of suitable services for a general mashup based on users’
functional specifications, a novel social-aware service
recommendation approach, where multi-dimensional social
relationships among potential users, topics, mashups, and
services are described by a coupled matrix model, is proposed
in this paper. Accordingly, a factorization algorithm is
designed to predict unobserved relationships, and as a result, a
comprehensive service recommendation model can be readily
constructed. Experimental results for a realistic mashup data
set indicate that the proposed approach outperforms other
state-of-the-art methods.

Keywords-service recommendation; social-aware; service
social network; mashup creation

I. INTRODUCTION

Services-oriented computing has revealed a new
paradigm and brought a technology revolution to traditional
IT system development. As service technology has been
developing rapidly, an increasing number of services are
available on the Internet, and consequently terms such as
Service Web and Internet of Services are proposed to
describe this phenomenon.

Although a user can occasionally employ a single
service to meet his needs directly, more often than not, the
fulfillment of his needs relies on a set of composed services.
Therefore, service composition has become a key
technology of service-oriented computing and there is a
tremendous amount of research on this particular topic.
Recently, the mashup technique, which allows users to
recompose existing services to create entirely new or
additional value-added services, emerges as a promising
service composition approach [1]. It essentially introduces a
simple self-serve approach [2] in which every user is able to
compose his own service applications by merely performing

a “drag and drop” action within a web browser. Obviously
from this perspective, a mashup is extremely consumer-
centric and lightweight, and it becomes more attractive to
most consumers using the Internet under the Web 2.0
paradigm. In recent years, a number of mashup platforms
have been developed by various industry vendors.

When a user begins to develop a mashup, the first task is
to discover and select suitable existing services. Since there
is a huge number of services on the Internet, finding the
appropriate ones can be really laborious even for an
experienced user. Therefore, service recommendation is
becoming increasingly critical as the number of services on
the Internet continues to grow rapidly. Based on above
observations, the problem we try to address in this paper is
how to recommend, for a particular user’s functional
specification, a set of suitable services that the user can
utilize to create a proper mashup. Although several service
recommendation systems and approaches already exist, they
are limited to proposing one or more services with similar
functionality. However, in order to develop a mashup, a user
often needs a set of related services rather than a single
specific service. Furthermore, in order to more precisely
recommend suitable services for a particular user, the user’s
implicit requirements, which are neglected by most current
service recommendation systems and approaches, should be
taken into consideration.

Figure 1. Services social network structure

Although users’ implicit requirements and their relevant
knowledge of certain tasks are difficult or even impossible to
model, they can be partially inferred and then captured from
some existing social networks formed over users, services,
and previous mashups. Fig.1 depicts such a social network,
where services, mashups, and users are mutually connected.
Based on this network, the underlying relationships can be
discovered. For example, two users with many common

Composite Service NetworkUser Network Service Network

*Jian Cao is the corresponding author

2013 IEEE 20th International Conference on Web Services

978-0-7695-5025-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICWS.2013.24

107

neighbors may likely share more common interests. For this
reason, we propose a social-aware service recommendation
approach for mashup creation. The contributions of this
paper are three-fold: (1) we propose a coupled matrix model
to describe the multi-dimensional relationships among users,
mashups, and services, (2) we design a factorization
algorithm to predict unobserved relationships in the model to
support more accurate service recommendations, and (3) we
present a set of experiments to evaluate our approach on a
real data set. The experimental results indicate that our
approach is promising and outperforms existing approaches.

II. RELATED WORK

There are several systems and approaches previously
developed to support service discovery and recommendation.
Traditional information retrieval technologies such as vector
space model and term frequency-inverse document
frequency are used to build service search engines or service
recommendation systems [3]. In these systems, candidate
services are recommended according to the syntactic
matches between the query string and service description
documents. These approaches can be further improved by
applying semantic technology [4]. Furthermore, in order to
recommend services that are able to meet specific QoS
requirements, a specific matrix can be defined to rank
services [5]. However, all of these approaches will
inevitably encounter the problem in which a user’s complete
requirements cannot be explicitly expressed when searching
a service. Although some approaches have incorporated user
preferences into the selection model, they can only be
applied to rank services that have been selected based on
explicit functional requirements [6].

Since services are chosen and invoked by multiple users,
collaborative filtering (CF), which originates from the idea
that people often get the best recommendations from others
with similar previous experiences, has also been employed
in service recommendation recently [7][8]. Although the CF
model reflects part of users’ implicit requirements, it ignores
more extensive social relationships among users and
services.

With services being widely deployed and utilized over
the Internet, relationships within service social networks can
be mined to help recommend and compose services [9][10].
However, these approaches only consider services
relationships, not the interactions between users and
services. Abderrahmane Maaradji et al. proposed a new
approach for services recommendation to assist services
composition using a mashup environment called SoCo [11].
In SoCo, proper services for a user are recommended based
on an implicit social graph inferred from the common
composition interests of users. In this paper, our approach
also makes use of social information to support service
recommendation, but the model of relationships is different
since we address a different problem. For example, the
services appearing in the same mashup have a co-
appearance relationship in our model while their model only
considers succeeding relationships. In addition, extra
information, such as topic information, is also included in

our model. These differences make our model more
comprehensive when creating a mashup for recommending
a set of services to satisfy users’ functional specifications.

III. A MOTIVATING USE CASE

In this section, we will show a case study to illustrate
how social information can enhance the process of service
recommendation.

The user is planning to build a mashup application that
emulate a social networking platform for Congress. First,
the user describe the demand as “A mashup developed to
emulate a social networking platform for Congress. It will
use several APIs and links to: news, blogs, comments, bio
information, voting records, campaign finance and more. “.

Then, recommendation engine starts up and incorporates
the mashup’s information, the services’ information, the
services provider’s information, and also, the service
consumer’s information. Using the information of mashup
and service, the engine will recommend the mashlets that
have most common features with the demand description of
mashup to user. On the other hand, recommendation engine
will take the user’s historical service invocation records and
the mashlet provider’s social features into consideration,
give higher score to those mashlets whose provider have
similar interest with the user, and those mashlets which the
user have preference on them.

The recommendation-based method with focus on social
relationship could enrich the composition scenario with
additional services that were not initially taken into
consideration during the specification of this scenario. In
this senario, the recommendation engine will recommend
YouTube, Flickr, Facebook and Eventful to the user, and the
user finally select YouTube, Yahoo, Technorati, Open
Secrets, Google Social Graph, Flickr, Eventful and Capitol
Word to build the mashup application.

Idea: A Mashup emulate a SNS for Congress...

Result: A group of recommended services...

User
Recommendation

Engine

Social

 Connection

Historical Invocation

Figure 2. Service Recommendation Use Case.

IV. MODEL AND ALGORITHMS

A. Model Construction
The social-aware service recommendation model consists

of a main matrix and several subsidiary matrices. The main
matrix models relationships between mashups and services
while subsidiary matrices help to incorporate additional
relational information into the model.

108

1) Main Matrix
We denote the mashups as � = ���, ��, ⋯ , �|�|	 .

Given a mashup m
 , we can retrieve the services that ��
includes, which are denoted as
S�
 = �s�
,�, s�
,�, ⋯ , s�
,���
�� . A matrix � whose rows
correspond to mashups and whose columns correspond to
services can be constructed. Each entry of this matrix is
assigned a binary value (1 or 0) to indicate whether a service
is included in a mashup or not.

2) Subsidiary Matrices
Subsidiary matrices are applied to model other

relationships. In our experiment, we construct matrices
corresponding to Mashups-Creators, Mashups-Topics,
Services-Topics, Services-Providers, and Services-Tags
relationships.

For a user �� , all mashups created by that user are
extracted. Then the Mashups-Creators relationship can be
represented by a binary matrix �� with rows corresponding
to mashups and columns corresponding to users.

In order to model the relationships between a user’s
functional requirements and mashups, the semantic
information of the specification must be obtained first. We
use topic model to capture the semantic information. The
topic model (TM) assumes that the distribution of words is
different in different topics and each document can be
treated as a mixture of k topics. Different topic models can
be derived by different probabilistic generative processes of
the documents. We use the LDA model [13] to capture the
topic features. A LDA can discover topic distributions for
each document, i.e., � (� | �), with each topic described by
words following a probability distribution, i.e., �(� | �) .
This can be formalized as:

�(��| �) = ∑ �(��|�� = �)�(�� = � | �)���� (1)

where �(��| �) is the probability of the i-th word for a
given document d and �� is a topic. �(��|�� = �) is the
probability of �� within topic j. �(�� = � | �) is the
probability of generating a word from topic j in the
document d. The number of topics Z is defined in advance
and it can be used to control the differences among topics.
LDA estimates the topic-word distribution �(� | �) and the
document-topic distribution � (� | �) from an unlabeled
corpus of documents using Dirichlet priors for the
distributions and a fixed number of topics. We use the LDA
algorithm to extract topic distributions from mashup
descriptions so that a matrix �! for mashup-topic
relationship can be constructed.

Similarly, we can define three additional matrices for all
services. We use a binary matrix SP to denote the service-
provider relationship. "! and "# are two other matrices that
model the service-topic relationship and service-tag
relationship respectively.

X

M
as

hu
ps

Services

Tags

SP

ST

MT

Topics

Creators

Providers

MC

SG

Figure 3. Coupled matrices model for service recommendation.

Therefore, we have a main matrix $ and five subsidiary
matrices. �! and �� couple with $ on the “mashups”
dimension. And ST, SP, and SG couple with $ on the
“services” dimension. (See Figure 2).

With this coupled matrix model in hand, the problem
boils down to a blank value estimation problem. Inspired by
the capability of matrix factorization techniques to factorize
a matrix into two low-rank factor matrices, we propose a
coupled matrix factorization approach to complete the value
estimation task for our model.

B. Coupled Matrices Factorization Algorithm
So far we have built a coupled matrices model where all

the data are arranged into a main matrix and subsidiary
matrices. In this section, we discuss how to factorize these
coupled matrices and predict desired services for mashup
creation.

Typically, a relation modeled by a matrix % can be
factorized into two low-rank latent factor matrices & and '
[16], that is, % = &'* where +, - ∈ ℝ0 (latent factor
vectors) are the rows of &, ' and d is the dimensionality of
the latent factor space. In this section, a graphical model
based on the above constructed matrices is presented and a
factorization method is also provided to find factor matrices
so as to make a prediction.

1) Graphical Model for Coupled Matrices
With the main matrix $ and five subsidiary matrices

�!, ��, "!, "1, and "# in hand, the graphical model for
these coupled matrices can be given by Figure 3. $ can be
factorized into 2� and 23 for dimensions Mashup and
Service. Likewise, the factor matrices of �! for dimensions
Mashups and Topics are represented by 2� and 2*; 24 and 2� are the factor matrices of �� for dimensions Mashups
and Creators; 23 and 2* are the factor matrices of "! for
dimensions Services and Topics; 23 and 25 are the factor
matrices of "1 for dimensions Services and Providers; 23
and 26 are the factor matrices of "# for dimensions
Services and Tags. It is easy to see that �! and �� share
the common factor matrix 2� with $, i.e., 2� serves as the
latent factor matrix for $, �! , and �� , so that the
mashup’s creator information and mashup’s topic
distribution can influence the mashup preference for the
services. Likewise, "!, "1, and "# share the common factor

109

matrix 23 with $; "! shares the common factor matrix 2*
with �!. Since the shared latent factor matrices are learned
through fitting multiple coupled matrices together, so we
could set the weights (here are denoted as 7 in Figure 3) to
scale the loss of fitting each matrix. The predicted main
matrix $8 can be approximated by 2�23*, where each row of
the mashup factor matrix 2� is the mashup’s latent factor
vector, which can be interpreted as the amount of mashup ��’s personalized preference over the latent factor of some
services.

Target
Matrix
Target
Matrix

FM

FS

FG

X
MT

SG

MC

λFg

λFs

λFm

Ix

FC λFc

FPSP

λFp

FT

ST

λFt

Legend
M F

Observed
Matrix

Factor
Matrix

λF

Hyper
Parameter

Weight
Parameter

Figure 4. Graphical model for coupled matrices.

2) Coupled Matrices Factorization
According to the graphical model, it is easy for us to

translate it into a loss function for optimization [14, 15] as
follows:

9 = :; + :� + :3 + > (2)
where 9 is composed of three parts of losses on all

relations and regularization terms to prevent overfitting [17].
The objective function consists of the losses :;, :�, :3 and
the regularization term Ω, where ‖∙‖ denotes the Frobenius
norms.

:; = CD
� EF; ∗ (� − 2�23*)E� (3)

:� = CIJ
� E�K − 2�2**E� + CIL

� E�M − 2�24*E� (4)
:3 = COJ

� EQRK − 2*23*TE� + COU
� ER� − 2523*E�

+ COV
� ERW − 2623*E� (5)

> = ∑ YZ
�[∈Q[I,[O,[J,[L,[U,[VT ‖2‖� (6)

:; models the loss on fitting the rating matrix, where F;
denotes the indicator matrix in which the entry 0 represents

unused services and 1 stands for used ones. The operator ∗
denotes the element-wise product.

L� and :^ (Eq. 4 & 5) are the loss functions for
subsidiary matrices. 2� is the linear concatenation of
auxiliary latent factor matrices and the weights of these
matrices are determined by the parameter α
.

Simply minimizing a loss may lead to overfitting, so the
function Ω is augmented to normalize all factor matrices. `[
in Eq. (6) is used to control the penalty of each latent factor
matrix.

In order to minimize the object function, we need to
compute the gradient with respect to each factor matrix and
then we can use any first-order optimization algorithm. The
partial derivatives of Ω are easy to derive with respect to
each factor matrix as follows:

a>
a2 = `[2�,23, 2*, 24, 25, 26

The partial derivatives of :; with respect to 2� and 23
are given as follows:

a:;
a2�

= [F; ∗ (2�23* − �)]23
a:;
a23

= [F; ∗ (2�23* − �)]2�

More details of the derivation can be found in [14, 15].
The partial derivatives with respect to other factor matrices 2*, 24, 25, 26 are zeros.

Similarly, the partial derivatives of :� and :3 are given
by:

a:�
a2*

= 7�*Q2�2** − �KT2�
a:�
a24

= 7�4(2�24* − �M)2�

a:�
a2�

= 7�*Q2�2** − �KT2* + 7�*Q2�24* − �MTM
a:3
a2*

= 73*Q2*23* − RKT23
a:3
a25

= 735Q2523* − R�T23
a:3
a26

= 736Q2623* − RWT23

a:3
a23

= 73*Q2*23* − RKT2* + 735Q2523* − R�T25

+736Q2623* − RWT26

110

From Eq. (4), we can easily write the partial derivatives
of 9 with respect to 2 ∈ �2�,23, 2*, 24, 25, 26	:

a9
a2 = a:;

a2 + a:�
a2 + a:3

a2 + a>
a2

The gradient of 9 can be written by vectorizing ef
e[and

then we can obtain Eq. (7):

g9 = hijk(ef
e[)l[∈�[I,[O,[J,[L,[U,[V	 (7)

Now that we have built the objective function and
derived its gradient, we can use some type of gradient-based
optimization algorithm like the Nonlinear Conjugate
Gradient (NCG) [17] or the Limited-Memory BFGS method
(L-BFGS) to compute the factor matrices. As shown in
Algorithm 1, we use an iterative algorithm to approximate
the factor matrices:

Algorithm 1: Factorization by Iterative Gradient Descent
 Initialize �2�,23, 2*, 24, 25, 26	 randomly;
K ← pℎj �rtu�rv w��xjy z9 upjyrpuzw{;
p ← 1;
while p ≤ K
Compute the objective function 9 by Equation (2);
Compute the gradients g9 by Equation (7);
Update �2�,23, 2*, 24, 25, 26	 by gradient descent

algorithm;
if convergence then

break;
end if
p ← p + 1;
end while
Output �2�,23, 2*, 24, 25, 26	;

C. Service Recommendation
With this factorization model at hand, we can now focus

on how to recommend a suitable set of services that a user is
likely to employ to create the mashup based on that user’s
functional specification. During the service recommendation
process, explicit profile knowledge about a user and a
service is trivial to obtain; we run topic model to extract
implicit information from the user’s functional specification
and incorporate this new vector into our model.

Through algorithm 1, we can obtain all the low rank
latent factor matrices. To infer the potential services for
mashup creators, we can reconstruct the missing data
straightforwardly from the latent factor matrices 2� and 23
of main matrix X:

�� = 2�23* (10)
Given a mashup ��, the recommendation ranks for the

candidate services can be given by sorting the reconstructed
values in a descending order:

 yjk(��) = ��(��) ↓ (11)
We organize our service recommendation procedure as

follows:

Procedure : Service Recommendation
 Input user ID u and functional specification;
 Create a new mashup ID m, |M| ← |M| + 1;
 Run topic model on the specification to get topic vector

T;
 Add an entry to MT with vector T;
 Add an entry to MC with [u, m]
 Run the coupled factorization algorithm to obtain

�2�,23, 2*, 24, 25, 26	
Construct the predict matrix $8 = 2�23*
Sorting the reconstructed values yjk(��) = �8(��) ↓

Output the top N services;

V. EXPERIMENTS

A. DataSet
In order to construct a network view of the services

ecosystem, we turned to the largest online repository of
information about Web 2.0 mashups and services, namely,
the ProgrammableWeb.com. The research of Shuli Yu and
C. Jason Woodard [18] showed the services social network
constructed on ProgrammableWeb.com dataset has the
small-world network property, which means its
characteristic path length is similar to that of a random
network with the same density despite having a much larger
clustering coefficient. This suggests that services with very
different functionality are more likely to be connected
through mashups than one might otherwise expect, and the
dataset is realistic and suitable for our experiment.

This aggregator site provides the most comprehensive
lists of services and mashups to date. Details about who
creates a mashup and the services each mashup consists of
are also available in the site. Our data set consists of 6691
mashups, 6111 services, and 2369 users. Table I lists
detailed information about this data set.

TABLE I. STATISTICS OF PROGRAMMABLEWEB DATA FOR
EVALUATION

#Services # Mashups #Users
Max. #

Services
for a User

Max. #
Services of
a Mashup

6111 6691 2369 81 54
We collected all profiles of the services, mashups, and

users, which include the descriptions of services, types and
tags of services, descriptions of mashups, and some
attributes of users. We extracted topics of mashups and
services from their descriptions using the LDA model. In
the experiment, we set the number of topics to 100.

B. Comparative Methods
The following methods are evaluated for comparison,

including our model and other state-of-the-art models.

111

MF: The MF model minimizes the regularized squared
error by stochastic gradient descent.

User-Based: For a user-based algorithm, we first
calculate the similarity, ��,�, between the users � and i who
have co-rated the same set of items. Typically, the similarity
can be measured by computing the Pearson correlation:

��,� = ∑ Q��,���̅�TQ��,���̅�T�∈��,�
�∑ Q��,���̅�T��∈��,� ∑ Q��,���̅�T��∈��,�

 (12)

where ��,� = �� ∩ �� (�� = ⋃ ��00∈� , �� = ⋃ �-00∈�)
denotes the items over all domains � co-rated by � and i;
y�,� and y�,� are the ratings on item � given by users � and i
respectively; y̅� is the average rating of user � for all the
items rated. Then, the predicted rating of an item � for user
� can be calculated by a weighted average strategy:

ŷ�,� = ∑ ��,��∈��,�� ��,�
∑ ���,���∈��,�� (13)

where &�,�� denotes the set of top � users (� neighbors)
that are most similar to user � who rated item � . To
compensate for ratings scale variations, Eq. (14) is often
used to adjust for users’ mean ratings:

ŷ�,� = y̅� + ∑ ��,��∈��,�� Q��,���̅�T
∑ ���,���∈��,�� (14)

Item-Based: The item-based method also needs to
compute the similarity, ��,� , between a pair of items � and
�. Given co-rated cases ��,� over items � and �, i.e., each
case is that a user rated both � and � , the Pearson
correlation is given as follows:

��,� = ∑ Q��,���̅�TQ��, ��̅ T�∈��,
�∑ Q��,���̅�T��∈��, ∑ Q��, ��̅ T��∈��,

 (15)

Then, the predicted value, ŷ�,� , is taken as a weighted
average of the ratings for neighboring � items rated by �,
denoted 1�,�¡ :

ŷ�,� = ∑ ��, ∈U�,�� : ��,
∑ ���, ��∈��,�� (16)

Semantic-Based The semantic-based method analyzes
a set of descriptions of services previously used in a mashup,
and builds a model of mashup interests based on the features
of the services used by that mashup.

Hybrid This method uses the historical composite
services record to optimize the links in the semantic-based
prediction result. The ranking score is the weighted average
score of MF method and semantic-based method.

C. Evaluation Metrics
Recommending services to the user is equivalent to

returning the top N ranked entries of a query. Hence it is
natural to use ranking metrics to evaluate the performance.
In the experiments, we used two commonly used metrics in
information retrieval. They are defined as follows:

Precision@N: Precision of the top N ranked entries of
each query:

�yjku{uzw@¤ = |¥¦§�¨©@ª∩«¬@ª|
ª (17)

where Result@N is the predicted top N entries and
Ob@N is the truly observed top N entries. We report the
average precision over all test data.

MAE: Mean absolute error (MAE) that measures the
rating prediction quality. MAE is defined as:

�µ¶ = ∑ ���,���̂�,��
ª��,�∈·¸¹º¸ (18)

where y�,� denotes the rating user � gave to item �, ŷ�,�
is the predicted rating � gave to � , and ¤ denotes the
number of ratings for testing in �pj{p.
D. Experiment Results

1) Selection of the result set size N
As for the recommendation system, the number of

recommended entries significantly influences the
recommendation performance and user experience. It is
nearly impossible for a very small result set to achieve a
satisfactory MAP, while a large result set would get a high
MAP but it is not practical to push a lengthy candidate list
for our mashup creator. The average number of services a
mashup used in our dataset is 4.85. Figure 4 reports the
MAP of different methods on varying sizes of the result set.
Based on this, we chose N= 20 in our following experiments
as it is a reasonable length for a candidate list and it
generates a relatively high performance. Also, as we can see
in the result, our social-aware method creates a more
accurate ranking than other models:

Figure 5. MAP of different methods on varying N

2) Impact of Data Density
Recommendation performance is also influenced by data

density. Data density means how many records in the matrix

112

can be employed to predict the missing values. In order to
study the impact of training data density, in this experiment,
we vary density from 0.05 to 0.95. Figures 5 and 6 display
the impact of data density on prediction accuracy for
different approaches.

TABLE II. RESULTS OF MAP BY VARYING DATA DENSITY

Data
Density(%) 5% 20% 80% 95%

MF 30.33% 33.89% 31.46% 32.59%

Item-Based 30.10% 30.06% 34.41% 40.28%

User-Based 30.82% 31.21% 34.70% 35.63%

Semantic 35.12% 35.12% 35.12% 35.12%

Hybrid 41.92% 45.84% 47.24% 50.71%

Social-
Aware

50.27% 62.34% 65.43% 69.88%

TABLE III. RESULTS OF MAE BY VARYING DATA DENSITY

Data
Density(%) 5% 20% 80% 95%

MF 0.9314 0.7228 0.5327 0.2278

Item-Based 0.9978 0.9323 0.7219 0.4654

User-Based 0.9817 0.8823 0.6547 03822

Semantic 0.9322 0.9322 0.9322 0.9322

Hybrid 0.9526 0.8728 0.6945 0.3889

Social-Aware 0.7515 0.5298 0.4350 0.1577

Figure 6. Results of MAP by varying data density

Figure 7. Results of MAE by varying data density

3) Impact of Weights
Our method offers a flexible mechanism to control the

amount of impact from other sources on the target domain
by tuning the weights of those sources. Too large a weight
may impose too heavy an impact on the target domain,
overwhelming the information learned from the target
domain. On the other hand, too small a weight for auxiliary

domains may cause the extra knowledge to be ignored in the
target domain, resulting in not learning the global user
preference. In experiments, we vary the weight on one
source of the factors from 2−5 to 25 step by 2, and fix the
weight on other sources to be 1. Figures 7 and 8 depict the
MAPs and MAEs with different weights on mashup creator
factor(MC), mashup-topic factor(MT), service provider
factor(SP), service-topic factor(ST), and service-tag
factor(SL). As expected, we find that the best performance
is achieved by choosing different weights for different
sources. The optimal weight hence may depend on the
distribution of the value of the factor and the correlation
with the target domain.

Figure 8. Results of MAP by varying weights

Figure 9. Results of MAE by varying weights

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the necessity of
considering social networks in the process of services
recommendation and how this can help improve
recommendations. We demonstrated that not only the social
relationship between users but also the interactions between
services are important for a more accurate recommendation,
and it is more effective and feasible to view process
information as a useful knowledge source for services
recommendation.

To utilize the implicit knowledge both in text profiles
and social networks, we used topic model to extract the
implicit semantic information and proposed a new social-
aware approach for services recommendation. Then we
utilized the framework to design and implement an
algorithm to rank services using a coupled matrices
factorization method.

Finally, we performed a set of experiments to validate
our approach on a realistic dataset. Experimental results

113

indicated that our approach outperformed other existing
approaches for this particular dataset.

In the future, we plan to build an online collaboration
platform based on this model. We believe that the more the
model is used, and the more it collects information on how
users build mashups for existing services, the better the
resulting recommendations will be. In this case, we
probably need to consider how to update the model to
dynamically analyze information in real time, and to closely
follow the latest trends in services selection and
composition by users. And with the services social network
become larger and larger in the future, we should verify
whether the processing time scales with the number of
services in the social network.

It should be mentioned that our coupled matrices model
is also extendable and we can add more matrices to include
more relationships if necessary. Of course, the weight value
for each matrix should be carefully assigned due to
changing contexts of specific experiments. We believe it is
possible to design an approach to discover the best
weighting strategy for a given model automatically. In this
paper, we simply apply the topic model to capture the
semantic information of the functional specification.
Obviously, this is a simplification of the real semantics of
the specification. If the order of the words and its
implication in the specification can be considered, it’s
possible to suggest the order among services in the mashup
to be created. This is also part of the future work we are
going to explore.

VII. ACKNOWLEDGMENT

This work is partially supported by China National
Science Foundation (Granted Number 61073021,
61272438), Research Funds of Science and Technology
Commission of Shanghai Municipality (Granted Number
11511500102, 12511502704), Cross Research Fund of
Biomedical Engineering of Shanghai Jiaotong University
(YG2011MS38).

REFERENCES

[1] Liu, Xuanzhe, et al. "Towards service composition based on mashup."
Services, 2007 IEEE Congress on. IEEE, 2007.

[2] Blake, M. Brian, and Michael F. Nowlan. "A web service
recommender system using enhanced syntactical matching." Web
Services, 2007. ICWS 2007. IEEE International Conference on. IEEE,
2007.

[3] Athman Bouguettaya, Surya Nepal, Wanita Sherchan, Xuan Zhou,
Jemma Wu, Shiping Chen, Dongxi Liu, Lily Li, Hongbing Wang,
Xumin Liu, "End-to-End Service Support for Mashups," IEEE

Transactions on Services Computing, vol. 3, no. 3, pp. 250-263, July-
Sept. 2010, doi:10.1109/TSC.2010.34.

[4] C. Platzer, S. Dustdar, A Vector Space Search Engine for Web
Services, Web Services, 2005. ECOWS 2005. Third IEEE European
Conference on In ECOWS '05: Proceedings of the Third European
Conference on Web Services (2005), 62.

[5] Asma Adala, Nabil Tabbane, and Sami Tabbane, A Framework for
Automatic Web Service Discovery Based on Semantics and NLP
Techniques, Advances in Multimedia, Vol. 2011 (2011),
doi:10.1155/2011/238683.

[6] Raj, R.J.R. , Sasipraba, T. , Web service recommendation framework
using QoS based discovery and ranking process, 2011 Third
International Conference on Advanced Computing (ICoAC), 14-16
Dec. 2011, 371 – 377.

[7] Liwei Liu, Nikolay Mehandjiev, Dong-Ling Xu: Multi-criteria
service recommendation based on user criteria preferences. RecSys
2011: 77-84.

[8] Z. Zheng, H. Ma, M. R. Lyu and I. King. “QoS-Aware Web Service
Recommendation by Collaborative Filtering”, IEEE T. Services
Computing, pp. 140 – 152, 2011.

[9] Jiang, Y., Liu, J. Tang, M., Liu, X. An Effective Web Service
Recommendation Method Based on Personalized Collaborative
Filtering. In ICWS (2011), 211 – 218.

[10] Yuanbin Han, Shizhan Chen, Zhiyong Feng, Optimizing Service
Composition Network from Social Network Analysis and User
Historical Composite Services, AAAI Technical Report SS-12-04
Intelligent Web Services Meet Social Computing, AAAI Technical
Report SS-12-04 Intelligent Web Services Meet Social Computing .

[11] Maamar, Z. Santos, P. ; Wives, L. ; Badr, Y. ; Faci, N. ; de
Oliveira, J.P.M. Using Social Networks for Web Services Discovery

Internet Computing, IEEE , July-Aug. 2011 , Vol. 15(4): 48 – 54.
[12] Maaradji, Abderrahmane, et al. "Social Discovery and Composition

of Web Services." EUD4Services Workshop-Empowering End-Users
to Develop Service based Applications; Torre Canne, Italy, June 2011.
2011.

[13] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent
dirichlet allocation." the Journal of machine Learning research 3
(2003): 993-1022.

[14] Ma, H., Yang, H., Lyu, M. R. and King, I. SoRec: social
recommendation using probabilistic matrix factorization. In
Proceeding of the 17th ACM conference on Information and
knowledge management (Napa Valley, California, USA, 2008).

[15] Salakhutdinov, R. and Mnih, A. Probabilistic matrix factorization. In
Advances in neural information processing systems (2008).

[16] Koren, Y., Bell, R. and Volinsky, C. Matrix factorization techniques
for recommender systems. Computer, 42, 8 2009), 30-37.

[17] Singh, A. P. and Gordon, G. J. Relational learning via collective
matrix factorization. In Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining
(Las Vegas, Nevada, USA, 2008).

[18] Yu S, Woodard C J. Innovation in the programmable web:
Characterizing the mashup ecosystem[C]//Service-Oriented
Computing–ICSOC 2008 Workshops. Springer Berlin Heidelberg,
2009: 136-147.

114

