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Abstract—Mashup is a user-centric approach to create value-
added new services by utilizing and recombining existing 
service components. However, as services become increasingly 
more spontaneous and prevalent on the Internet, finding 
suitable services from which to develop a mashup based on 
users’ explicit and implicit requirements remains a daunting 
task. Several approaches already exist for recommending 
specific services for users but they are limited to proposing 
only services with similar functionality. In order to recommend 
a set of suitable services for a general mashup based on users’ 
functional specifications, a novel social-aware service 
recommendation approach, where multi-dimensional social 
relationships among potential users, topics, mashups, and 
services are described by a coupled matrix model, is proposed 
in this paper. Accordingly, a factorization algorithm is 
designed to predict unobserved relationships, and as a result, a 
comprehensive service recommendation model can be readily 
constructed. Experimental results for a realistic mashup data 
set indicate that the proposed approach outperforms other 
state-of-the-art methods. 
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I. INTRODUCTION

Services-oriented computing has revealed a new 
paradigm and brought a technology revolution to traditional 
IT system development. As service technology has been 
developing rapidly, an increasing number of services are 
available on the Internet, and consequently terms such as 
Service Web and Internet of Services are proposed to 
describe this phenomenon.  

Although a user can occasionally employ a single 
service to meet his needs directly, more often than not, the 
fulfillment of his needs relies on a set of composed services. 
Therefore, service composition has become a key 
technology of service-oriented computing and there is a 
tremendous amount of research on this particular topic. 
Recently, the mashup technique, which allows users to 
recompose existing services to create entirely new or 
additional value-added services, emerges as a promising 
service composition approach [1]. It essentially introduces a 
simple self-serve approach [2] in which every user is able to 
compose his own service applications by merely performing 

a “drag and drop” action within a web browser. Obviously
from this perspective, a mashup is extremely consumer-
centric and lightweight, and it becomes more attractive to 
most consumers using the Internet under the Web 2.0 
paradigm.  In recent years, a number of mashup platforms 
have been developed by various industry vendors. 

When a user begins to develop a mashup, the first task is 
to discover and select suitable existing services. Since there 
is a huge number of services on the Internet, finding the 
appropriate ones can be really laborious even for an 
experienced user. Therefore, service recommendation is 
becoming increasingly critical as the number of services on 
the Internet continues to grow rapidly. Based on above 
observations, the problem we try to address in this paper is 
how to recommend, for a particular user’s functional 
specification, a set of suitable services that the user can 
utilize to create a proper mashup. Although several service 
recommendation systems and approaches already exist, they 
are limited to proposing one or more services with similar 
functionality. However, in order to develop a mashup, a user 
often needs a set of related services rather than a single 
specific service. Furthermore, in order to more precisely 
recommend suitable services for a particular user, the user’s
implicit requirements, which are neglected by most current 
service recommendation systems and approaches, should be 
taken into consideration. 

Figure 1. Services social network structure 

Although users’ implicit requirements and their relevant 
knowledge of certain tasks are difficult or even impossible to 
model, they can be partially inferred and then captured from 
some existing social networks formed over users, services, 
and previous mashups. Fig.1 depicts such a social network, 
where services, mashups, and users are mutually connected. 
Based on this network, the underlying relationships can be 
discovered. For example, two users with many common 
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neighbors may likely share more common interests. For this 
reason, we propose a social-aware service recommendation 
approach for mashup creation. The contributions of this 
paper are three-fold: (1) we propose a coupled matrix model 
to describe the multi-dimensional relationships among users, 
mashups, and services, (2) we design a factorization 
algorithm to predict unobserved relationships in the model to 
support more accurate service recommendations, and (3) we
present a set of experiments to evaluate our approach on a 
real data set. The experimental results indicate that our 
approach is promising and outperforms existing approaches. 

II. RELATED WORK

There are several systems and approaches previously 
developed to support service discovery and recommendation. 
Traditional information retrieval technologies such as vector 
space model and term frequency-inverse document 
frequency are used to build service search engines or service 
recommendation systems [3]. In these systems, candidate 
services are recommended according to the syntactic 
matches between the query string and service description 
documents. These approaches can be further improved by 
applying semantic technology [4]. Furthermore, in order to 
recommend services that are able to meet specific QoS 
requirements, a specific matrix can be defined to rank 
services [5]. However, all of these approaches will 
inevitably encounter the problem in which a user’s complete 
requirements cannot be explicitly expressed when searching 
a service. Although some approaches have incorporated user 
preferences into the selection model, they can only be 
applied to rank services that have been selected based on 
explicit functional requirements [6]. 

Since services are chosen and invoked by multiple users, 
collaborative filtering (CF), which originates from the idea 
that people often get the best recommendations from others 
with similar previous experiences, has also been employed 
in service recommendation recently [7][8]. Although the CF 
model reflects part of users’ implicit requirements, it ignores 
more extensive social relationships among users and 
services.  

With services being widely deployed and utilized over 
the Internet, relationships within service social networks can 
be mined to help recommend and compose services [9][10]. 
However, these approaches only consider services 
relationships, not the interactions between users and 
services. Abderrahmane Maaradji et al. proposed a new 
approach for services recommendation to assist services 
composition using a mashup environment called SoCo [11]. 
In SoCo, proper services for a user are recommended based 
on an implicit social graph inferred from the common 
composition interests of users. In this paper, our approach 
also makes use of social information to support service 
recommendation, but the model of relationships is different 
since we address a different problem. For example, the 
services appearing in the same mashup have a co-
appearance relationship in our model while their model only 
considers succeeding relationships. In addition, extra 
information, such as topic information, is also included in 

our model. These differences make our model more 
comprehensive when creating a mashup for recommending 
a set of services to satisfy users’ functional specifications. 

III. A MOTIVATING USE CASE

In this section, we will show a case study to illustrate 
how social information can enhance the process of service 
recommendation.

The user is planning to build a mashup application that
emulate a social networking platform for Congress. First, 
the user describe the demand as “A mashup developed to 
emulate a social networking platform for Congress. It will 
use several APIs and links to: news, blogs, comments, bio 
information, voting records, campaign finance and more. “. 

Then, recommendation engine starts up and incorporates 
the mashup’s information, the services’ information, the 
services provider’s information, and also, the service 
consumer’s information. Using the information of mashup
and service, the engine will recommend the mashlets that 
have most common features with the demand description of 
mashup to user. On the other hand, recommendation engine 
will take the user’s historical service invocation records and 
the mashlet provider’s social features into consideration, 
give higher score to those mashlets whose provider have 
similar interest with the user, and those mashlets which the 
user have preference on them. 

The recommendation-based method with focus on social 
relationship could enrich the composition scenario with 
additional services that were not initially taken into 
consideration during the specification of this scenario. In 
this senario, the recommendation engine will recommend 
YouTube, Flickr, Facebook and Eventful to the user, and the 
user finally select YouTube, Yahoo, Technorati, Open 
Secrets, Google Social Graph, Flickr, Eventful and Capitol 
Word to build the mashup application. 

Idea: A Mashup emulate a SNS for Congress...

Result: A group of recommended services...

User
Recommendation 

Engine

Social

 Connection

Historical Invocation

Figure 2. Service Recommendation Use Case. 

IV. MODEL AND ALGORITHMS

A. Model Construction 
The social-aware service recommendation model consists 

of a main matrix and several subsidiary matrices. The main 
matrix models relationships between mashups and services 
while subsidiary matrices help to incorporate additional 
relational information into the model. 
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1) Main Matrix 
We denote the mashups as � = ���, ��, ⋯ , �|�|	 .

Given a mashup m
 , we can retrieve the services that ��
includes, which are denoted as 
S�
 = �s�
,�, s�
,�, ⋯ , s�
,���
�� . A matrix �  whose rows 
correspond to mashups and whose columns correspond to 
services can be constructed. Each entry of this matrix is 
assigned a binary value (1 or 0) to indicate whether a service 
is included in a mashup or not. 

2) Subsidiary Matrices 
Subsidiary matrices are applied to model other 

relationships. In our experiment, we construct matrices 
corresponding to Mashups-Creators, Mashups-Topics,
Services-Topics, Services-Providers, and Services-Tags
relationships. 

For a user �� , all mashups created by that user are 
extracted. Then the Mashups-Creators relationship can be 
represented by a binary matrix �� with rows corresponding 
to mashups and columns corresponding to users. 

In order to model the relationships between a user’s 
functional requirements and mashups, the semantic 
information of the specification must be obtained first. We 
use topic model to capture the semantic information. The 
topic model (TM) assumes that the distribution of words is 
different in different topics and each document can be 
treated as a mixture of k topics. Different topic models can 
be derived by different probabilistic generative processes of 
the documents. We use the LDA model [13] to capture the 
topic features. A LDA can discover topic distributions for 
each document, i.e., � (� | �), with each topic described by 
words following a probability distribution, i.e., �(� | �) .
This can be formalized as: 

�(��| �) =  ∑ �(��|�� = �)�(�� = � | �)����               (1) 

where �(��| �) is the probability of the i-th word for a 
given document d  and �� is a topic. �(��|�� = �) is the 
probability of ��  within topic j.  �(�� = � | �)  is the 
probability of generating a word from topic j in the 
document d. The number of topics Z is defined in advance 
and it can be used to control the differences among topics. 
LDA estimates the topic-word distribution �(� | �) and the 
document-topic distribution � (� | �)  from an unlabeled 
corpus of documents using Dirichlet priors for the 
distributions and a fixed number of topics. We use the LDA 
algorithm to extract topic distributions from mashup 
descriptions so that a matrix �!  for mashup-topic 
relationship can be constructed.  

Similarly, we can define three additional matrices for all 
services. We use a binary matrix SP to denote the service-
provider relationship. "! and "# are two other matrices that 
model the service-topic relationship and service-tag 
relationship respectively. 

X

M
as

hu
ps

Services

Tags
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ST
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Topics

Creators

Providers

MC

SG

Figure 3. Coupled matrices model for service recommendation. 

Therefore, we have a main matrix $ and five subsidiary 
matrices. �! and ��  couple with $ on the “mashups” 
dimension. And ST, SP, and SG couple with $ on the 
“services” dimension. (See Figure 2).

With this coupled matrix model in hand, the problem 
boils down to a blank value estimation problem. Inspired by 
the capability of matrix factorization techniques to factorize
a matrix into two low-rank factor matrices, we propose a 
coupled matrix factorization approach to complete the value 
estimation task for our model. 

B. Coupled Matrices Factorization Algorithm 
So far we have built a coupled matrices model where all 

the data are arranged into a main matrix and subsidiary 
matrices. In this section, we discuss how to factorize these 
coupled matrices and predict desired services for mashup 
creation. 

Typically, a relation modeled by a matrix %  can be 
factorized into two low-rank latent factor matrices & and '
[16], that is, % = &'*  where +, - ∈ ℝ0  (latent factor 
vectors) are the rows of &, ' and d is the dimensionality of 
the latent factor space. In this section, a graphical model 
based on the above constructed matrices is presented and a 
factorization method is also provided to find factor matrices
so as to make a prediction. 

1) Graphical Model for Coupled Matrices 
With the main matrix $ and five subsidiary matrices  

�!, ��, "!, "1, and "# in hand, the graphical model for 
these coupled matrices can be given by Figure 3. $ can be 
factorized into  2�  and  23  for dimensions Mashup and 
Service. Likewise, the factor matrices of �! for dimensions 
Mashups and Topics are represented by 2� and 2*;  24  and 2� are the factor matrices of �� for dimensions Mashups
and Creators;  23  and  2*  are the factor matrices of "! for 
dimensions Services and Topics;  23  and  25  are the factor 
matrices of "1 for dimensions Services and Providers;  23
and  26  are the factor matrices of "#  for dimensions 
Services and Tags. It is easy to see that �! and �� share 
the common factor matrix 2� with $, i.e., 2� serves as the 
latent factor matrix for $ , �! , and �� , so that the 
mashup’s creator information and mashup’s topic
distribution can influence the mashup preference for the 
services. Likewise, "!, "1, and "# share the common factor 
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matrix  23 with $; "! shares the common factor matrix  2*
with �!. Since the shared latent factor matrices are learned 
through fitting multiple coupled matrices together, so we 
could set the weights (here are denoted as 7 in Figure 3) to 
scale the loss of fitting each matrix. The predicted main 
matrix $8 can be approximated by 2�23*, where each row of 
the mashup factor matrix 2�  is the mashup’s latent factor 
vector, which can be interpreted as the amount of mashup ��’s personalized preference over the latent factor of some 
services. 

Target
Matrix
Target
Matrix

FM

FS

FG

X
MT

SG

MC

λFg

λFs

λFm

Ix

FC λFc

FPSP

λFp

FT

ST

λFt
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Matrix

Factor
Matrix

λF
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Figure 4. Graphical model for coupled matrices. 

2) Coupled Matrices Factorization 
According to the graphical model, it is easy for us to 

translate it into a loss function for optimization [14, 15] as 
follows: 

9 = :; + :� + :3 + >                                     (2) 
where 9  is composed of three parts of losses on all 

relations and regularization terms to prevent overfitting [17]. 
The objective function consists of the losses :;, :�, :3 and 
the regularization term Ω, where ‖∙‖ denotes the Frobenius 
norms. 

:; = CD
� EF; ∗ (� − 2�23*)E�                              (3)  

:� = CIJ
� E�K − 2�2**E� + CIL

� E�M − 2�24*E�      (4) 
:3 = COJ

� EQRK − 2*23*TE� + COU
� ER� − 2523*E�      

+ COV
� ERW − 2623*E�    (5) 

> = ∑ YZ
�[∈Q[I,[O,[J,[L,[U,[VT ‖2‖�                          (6) 

:; models the loss on fitting the rating matrix, where F;
denotes the indicator matrix in which the entry 0 represents 

unused services and 1 stands for used ones. The operator ∗
denotes the element-wise product. 

L� and :^  (Eq. 4 & 5) are the loss functions for 
subsidiary matrices.  2� is the linear concatenation of 
auxiliary latent factor matrices and the weights of these 
matrices are determined by the parameter α
. 

Simply minimizing a loss may lead to overfitting, so the 
function Ω is augmented to normalize all factor matrices. `[
in Eq. (6) is used to control the penalty of each latent factor 
matrix. 

In order to minimize the object function, we need to 
compute the gradient with respect to each factor matrix and 
then we can use any first-order optimization algorithm. The 
partial derivatives of  Ω are easy to derive with respect to 
each factor matrix as follows:  

a>
a2 = `[2�,23, 2*, 24, 25, 26 

The partial derivatives of :;  with respect to 2�  and 23
are given as follows: 

a:;
a2�

= [F; ∗ (2�23* − �)]23 
a:;
a23

= [F; ∗ (2�23* − �)]2� 

More details of the derivation can be found in [14, 15]. 
The partial derivatives with respect to other factor matrices 2*, 24, 25, 26 are zeros. 

Similarly, the partial derivatives of :�  and :3 are given 
by: 

a:�
a2*

= 7�*Q2�2** − �KT2� 
a:�
a24

= 7�4(2�24* − �M)2� 

a:�
a2�

= 7�*Q2�2** − �KT2* + 7�*Q2�24* − �MTM 
a:3
a2*

= 73*Q2*23* − RKT23 
a:3
a25

= 735Q2523* − R�T23 
a:3
a26

= 736Q2623* − RWT23 

a:3
a23

= 73*Q2*23* − RKT2* + 735Q2523* − R�T25 

+736Q2623* − RWT26 
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From Eq. (4), we can easily write the partial derivatives 
of 9 with respect to  2 ∈ �2�,23, 2*, 24, 25, 26	: 

a9
a2 = a:;

a2 + a:�
a2 + a:3

a2 + a>
a2 

The gradient of 9 can be written by vectorizing  ef
e[ and 

then we can obtain Eq. (7): 

g9 = hijk(ef
e[)l[∈�[I,[O,[J,[L,[U,[V	                   (7) 

Now that we have built the objective function and 
derived its gradient, we can use some type of gradient-based 
optimization algorithm like the Nonlinear Conjugate 
Gradient (NCG) [17] or the Limited-Memory BFGS method 
(L-BFGS) to compute the factor matrices. As shown in 
Algorithm 1, we use an iterative algorithm to approximate 
the factor matrices: 

Algorithm 1: Factorization by Iterative Gradient Descent 
 Initialize �2�,23, 2*, 24, 25, 26	 randomly;
K ← pℎj �rtu�rv w��xjy z9 upjyrpuzw{;
p ← 1;
while p ≤ K
Compute the objective function 9 by Equation (2); 
Compute the gradients g9 by Equation (7); 
Update �2�,23, 2*, 24, 25, 26	 by gradient descent 

algorithm; 
if convergence then 

break; 
end if 
p ← p + 1; 
end while 
Output �2�,23, 2*, 24, 25, 26	; 

C. Service Recommendation 
With this factorization model at hand, we can now focus 

on how to recommend a suitable set of services that a user is 
likely to employ to create the mashup based on that user’s
functional specification. During the service recommendation 
process, explicit profile knowledge about a user and a
service is trivial to obtain; we run topic model to extract 
implicit information from the user’s functional specification 
and incorporate this new vector into our model.  

Through algorithm 1, we can obtain all the low rank 
latent factor matrices. To infer the potential services for 
mashup creators, we can reconstruct the missing data 
straightforwardly from the latent factor matrices 2� and 23
of main matrix X:  

�� = 2�23*                                          (10) 
Given a mashup ��, the recommendation ranks for the 

candidate services can be given by sorting the reconstructed 
values in a descending order: 

   yjk(��) = ��(��) ↓                            (11) 
We organize our service recommendation procedure as 

follows: 

Procedure : Service Recommendation 
 Input user ID u and functional specification; 
 Create a new mashup ID m, |M| ← |M| + 1;
 Run topic model on the specification to get topic vector 

T; 
 Add an entry to MT with vector T; 
 Add an entry to MC with [u, m]
 Run the coupled factorization algorithm to obtain

�2�,23, 2*, 24, 25, 26	
Construct the predict matrix              $8 = 2�23*
Sorting the reconstructed values     yjk(��) = �8(��) ↓

Output the top N services; 

V. EXPERIMENTS

A. DataSet 
In order to construct a network view of the services 

ecosystem, we turned to the largest online repository of 
information about Web 2.0 mashups and services, namely, 
the ProgrammableWeb.com. The research of Shuli Yu and 
C. Jason Woodard [18] showed the services social network 
constructed on ProgrammableWeb.com dataset has the 
small-world network property, which means its 
characteristic path length is similar to that of a random 
network with the same density despite having a much larger 
clustering coefficient. This suggests that services with very 
different functionality are more likely to be connected 
through mashups than one might otherwise expect, and the 
dataset is realistic and suitable for our experiment. 

This aggregator site provides the most comprehensive 
lists of services and mashups to date. Details about who 
creates a mashup and the services each mashup consists of 
are also available in the site. Our data set consists of 6691 
mashups, 6111 services, and 2369 users. Table I lists 
detailed information about this data set. 

TABLE I. STATISTICS OF PROGRAMMABLEWEB DATA FOR 
EVALUATION

#Services # Mashups #Users
Max. # 

Services 
for a User

Max. # 
Services of 
a Mashup

6111 6691 2369 81 54
We collected all profiles of the services, mashups, and 

users, which include the descriptions of services, types and 
tags of services, descriptions of mashups, and some 
attributes of users. We extracted topics of mashups and 
services from their descriptions using the LDA model. In 
the experiment, we set the number of topics to 100. 

B. Comparative Methods 
The following methods are evaluated for comparison, 

including our model and other state-of-the-art models. 
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MF: The MF model minimizes the regularized squared 
error by stochastic gradient descent. 

User-Based: For a user-based algorithm, we first 
calculate the similarity, ��,�, between the users � and i who 
have co-rated the same set of items. Typically, the similarity 
can be measured by computing the Pearson correlation: 

��,� = ∑ Q��,���̅�TQ��,���̅�T�∈��,�
�∑ Q��,���̅�T��∈��,� ∑ Q��,���̅�T��∈��,�

              (12) 

where ��,� = �� ∩ ��  (�� = ⋃ ��00∈� , �� = ⋃ �-00∈� )
denotes the items over all domains � co-rated by � and i;
y�,� and y�,� are the ratings on item � given by users � and i
respectively; y̅�  is the average rating of user �  for all the 
items rated. Then, the predicted rating of an item � for user 
� can be calculated by a weighted average strategy: 

ŷ�,� = ∑ ��,��∈��,�� ��,�
∑ ���,���∈��,��                                (13) 

where &�,��  denotes the set of top � users (� neighbors) 
that are most similar to user �  who rated item � . To 
compensate for ratings scale variations, Eq. (14) is often 
used to adjust for users’ mean ratings:

ŷ�,� = y̅� + ∑ ��,��∈��,�� Q��,���̅�T
∑ ���,���∈��,��                        (14) 

Item-Based: The item-based method also needs to 
compute the similarity, ��,� , between a pair of items � and 
�. Given co-rated cases ��,�  over items � and �, i.e., each 
case is that a user rated both �  and � , the Pearson 
correlation is given as follows: 

��,� = ∑ Q��,���̅�TQ��, ��̅ T�∈��, 
�∑ Q��,���̅�T��∈��,  ∑ Q��, ��̅ T��∈��, 

          (15) 

Then, the predicted value, ŷ�,� , is taken as a weighted 
average of the ratings for neighboring � items rated by �,
denoted 1�,�¡ : 

ŷ�,� = ∑ ��,  ∈U�,�� : ��, 
∑ ���, ��∈��,��                            (16) 

Semantic-Based  The semantic-based method analyzes 
a set of descriptions of services previously used in a mashup, 
and builds a model of mashup interests based on the features 
of the services used by that mashup. 

Hybrid This method uses the historical composite 
services record to optimize the links in the semantic-based 
prediction result. The ranking score is the weighted average 
score of MF method and semantic-based method. 

C. Evaluation Metrics 
Recommending services to the user is equivalent to 

returning the top N ranked entries of a query. Hence it is 
natural to use ranking metrics to evaluate the performance. 
In the experiments, we used two commonly used metrics in 
information retrieval. They are defined as follows: 

Precision@N: Precision of the top N ranked entries of 
each query: 

�yjku{uzw@¤ = |¥¦§�¨©@ª∩«¬@ª|
ª                       (17) 

where Result@N is the predicted top N entries and 
Ob@N is the truly observed top N entries. We report the 
average precision over all test data. 

MAE: Mean absolute error (MAE) that measures the 
rating prediction quality. MAE is defined as: 

�µ¶ = ∑ ���,���̂�,��
ª��,�∈·¸¹º¸                           (18) 

where y�,� denotes the rating user � gave to item �, ŷ�,�
is the predicted rating �  gave to � , and ¤  denotes the 
number of ratings for testing in �pj{p. 
D. Experiment Results 

1) Selection of the result set size N 
As for the recommendation system, the number of 

recommended entries significantly influences the 
recommendation performance and user experience. It is 
nearly impossible for a very small result set to achieve a 
satisfactory MAP, while a large result set would get a high 
MAP but it is not practical to push a lengthy candidate list 
for our mashup creator. The average number of services a 
mashup used in our dataset is 4.85. Figure 4 reports the 
MAP of different methods on varying sizes of the result set. 
Based on this, we chose N= 20 in our following experiments 
as it is a reasonable length for a candidate list and it 
generates a relatively high performance. Also, as we can see 
in the result, our social-aware method creates a more 
accurate ranking than other models: 

Figure 5. MAP of different methods on varying N 

2) Impact of Data Density 
Recommendation performance is also influenced by data 

density. Data density means how many records in the matrix 
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can be employed to predict the missing values. In order to 
study the impact of training data density, in this experiment, 
we vary density from 0.05 to 0.95. Figures 5 and 6 display 
the impact of data density on prediction accuracy for 
different approaches. 

TABLE II. RESULTS OF MAP BY VARYING DATA DENSITY

Data
Density(%) 5% 20% 80% 95%

MF 30.33% 33.89% 31.46% 32.59%

Item-Based 30.10% 30.06% 34.41% 40.28%

User-Based 30.82% 31.21% 34.70% 35.63%

Semantic 35.12% 35.12% 35.12% 35.12%

Hybrid 41.92% 45.84% 47.24% 50.71%

Social-
Aware

50.27% 62.34% 65.43% 69.88%

TABLE III. RESULTS OF MAE BY VARYING DATA DENSITY

Data
Density(%) 5% 20% 80% 95%

MF 0.9314 0.7228 0.5327 0.2278

Item-Based 0.9978 0.9323 0.7219 0.4654

User-Based 0.9817 0.8823 0.6547 03822

Semantic 0.9322 0.9322 0.9322 0.9322

Hybrid 0.9526 0.8728 0.6945 0.3889

Social-Aware 0.7515 0.5298 0.4350 0.1577

Figure 6. Results of MAP by varying data density 

Figure 7. Results of MAE by varying data density 

3) Impact of Weights 
Our method offers a flexible mechanism to control the 

amount of impact from other sources on the target domain 
by tuning the weights of those sources. Too large a weight 
may impose too heavy an impact on the target domain, 
overwhelming the information learned from the target 
domain. On the other hand, too small a weight for auxiliary 

domains may cause the extra knowledge to be ignored in the 
target domain, resulting in not learning the global user 
preference. In experiments, we vary the weight on one 
source of the factors from 2−5 to 25 step by 2, and fix the 
weight on other sources to be 1. Figures 7 and 8 depict the 
MAPs and MAEs with different weights on mashup creator 
factor(MC), mashup-topic factor(MT), service provider 
factor(SP), service-topic factor(ST), and service-tag 
factor(SL). As expected, we find that the best performance 
is achieved by choosing different weights for different 
sources. The optimal weight hence may depend on the 
distribution of the value of the factor and the correlation 
with the target domain. 

Figure 8. Results of MAP by varying weights 

Figure 9. Results of MAE by varying weights 

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the necessity of 
considering social networks in the process of services 
recommendation and how this can help improve 
recommendations. We demonstrated that not only the social 
relationship between users but also the interactions between 
services are important for a more accurate recommendation,
and it is more effective and feasible to view process 
information as a useful knowledge source for services 
recommendation. 

To utilize the implicit knowledge both in text profiles 
and social networks, we used topic model to extract the 
implicit semantic information and proposed a new social-
aware approach for services recommendation. Then we
utilized the framework to design and implement an 
algorithm to rank services using a coupled matrices 
factorization method.  

Finally, we performed a set of experiments to validate 
our approach on a realistic dataset. Experimental results 
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indicated that our approach outperformed other existing 
approaches for this particular dataset.  

In the future, we plan to build an online collaboration 
platform based on this model. We believe that the more the 
model is used, and the more it collects information on how 
users build mashups for existing services, the better the 
resulting recommendations will be. In this case, we
probably need to consider how to update the model to 
dynamically analyze information in real time, and to closely 
follow the latest trends in services selection and 
composition by users.  And with the services social network 
become larger and larger in the future, we should verify 
whether the processing time scales with the number of 
services in the social network. 

It should be mentioned that our coupled matrices model 
is also extendable and we can add more matrices to include 
more relationships if necessary. Of course, the weight value 
for each matrix should be carefully assigned due to 
changing contexts of specific experiments. We believe it is 
possible to design an approach to discover the best 
weighting strategy for a given model automatically. In this 
paper, we simply apply the topic model to capture the 
semantic information of the functional specification. 
Obviously, this is a simplification of the real semantics of 
the specification. If the order of the words and its
implication in the specification can be considered, it’s
possible to suggest the order among services in the mashup 
to be created.  This is also part of the future work we are 
going to explore. 
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