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ABSTRACT

NON-IID RECOMMENDER SYSTEMS:

A MACHINE LEARNING APPROACH

by

Liang Hu

A recommender system (RS) comprises the core software, tools, and techniques

that effectively and efficiently cope with information overload as well as locate in-

formation that is genuinely required. As one of the most widely used artificial

intelligence (AI) systems, RSs have been integrated into daily life over the past

two decades. In recent decade, the machine learning approach has dominated AI

research in almost all areas. Therefore, modeling advanced RSs using the machine

learning approach forms the basic methodology of this thesis.

Current RSs suffer from many problems, such as data sparsity and cold start,

because they fail to consider the non-IIDness in data, which includes the hetero-

geneities and coupled relations within and between users and items, as well as their

interactions. Thus, we propose non-IID recommender systems by modeling the non-

IIDness in recommendation data with the machine learning approach. Specifically,

we study non-IID RS modeling techniques from three perspectives: users, items, and

interactions. This research not only promotes the design of new machine learning

models and algorithms in theory, but also extensively influences the evolution of

technology and society.

To construct the non-IID RS from a user perspective, we jointly model two

aspects: (1) the heterogeneities of users and (2) the coupling between users. Specif-

ically, we study the non-IID user modeling in two representative RSs: (1) a group-

based RS (GBRS) and (2) a social network-based RS (SNRS). First, we perform an

in-depth analysis of existing GBRSs and demonstrate their deficiencies in modeling



the heterogeneity and coupling between group members for making group deci-

sions. A deep neural network is designed to learn a group preference representation,

which jointly considers all members’ heterogeneous preferences. Second, we model

an SNRS by modeling the influential contexts that embed the influence of relevant

users and items, because a user’s selection is largely influenced by other users with

social relationships.

To construct the non-IID RS from an item perspective, we target two model-

ing aspects: (1) the heterogeneities of items and (2) the coupling between items.

Specifically, we study the non-IID item modeling in two representative RSs: (1) a

cross-domain RS (CDRS) and (2) a session-based RS (SBRS). First, existing CDRSs

may fail to conduct cross-domain transfer because of domain heterogeneity; thus, we

propose an irregular tensor factorization model, which can more effectively capture

the coupling between heterogeneous domains with learning the domain factors for

each domain. Second, we construct an effective and efficient personalized SBRS to

more effectively capture the couplings between items by modeling intra- and inter-

session contexts.

To construct the non-IID RS from an interaction perspective, we target two

modeling aspects: (1) the heterogeneities of interactions and (2) the coupling be-

tween interactions. Specifically, we study the non-IID interaction modeling in two

representative RSs: (1) a multi-objective RS (MORS) and (2) an attraction-based

RS (ABRS). First, we study an MORS to tackle the challenges of recommendation

for users and items in the long tail. Subsequently, a coupled regularization model is

proposed to jointly optimize two objectives: the credibility and specialty. Existing

content-based RSs can recommend new content according to similarity; however,

they are not capable of interpreting the attraction points in user-item interactions.

Therefore, to construct an interpretable content-based RS, we propose attraction

modeling to learn and track user attractiveness.

In the last section, we summarize the contributions of our work and present the

future directions that can improve and extend the non-IID RS.
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Chapter 1

Introduction

With the rapid development of Internet technology and artificial intelligence (AI),

various information, products, and other resources have become much easier to be

published and shared than ever before. Different from the centralized information-

publishing mode in the Web 1.0 age, everyone is a source of social media and plays

the role of information publisher. As a result, new information, products, and other

resources continually appear. The main challenge in this era no longer focuses on

how to share and search for information but how to effectively and efficiently locate

and extract the information which is really needed.

Researchers have argued that: we are leaving the “Information Age” and entering

the “Recommendation Age” [7]. Especially, recommender systems (RSs) are the core

software, tools, and techniques providing suggestions in this age. The suggestions

provided by a recommender system are aimed at supporting their users in various

decision-making processes, such as what items to buy, what music to listen, or

what news to read. Recommender systems are valuable tools for online users to

cope with information overload and help them make better choices. Recommender

systems are now one of the most powerful and popular information discovery tools

on the web. Many techniques for recommendation have been proposed, and during

the last decade, many of them have also been successfully deployed in commercial

environments [184].
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1.1 Background

Advanced RSs can improve customers’ user experience and make more profits

for enterprises. The most well-known companies have tightly integrated an RS into

their main business. For example, E-commerce companies such as Amazon (http:

//www.amazon.com/), eBay (http://www.ebay.com/), and Alibaba (http://www.

alibaba.com/); the online social websites like Facebook (http://www.facebook.

com/), Twitter (http://www.twitter.org/), and Weibo (http://www.weibo.com/);

search service providers such as Google (http://www.google.com/), Bing (http:

//www.bing.com/), and Baidu (http://www.baidu.com/); and even public services,

have paid more attention to RSs. Modeling an RS is a multidisciplinary effort that

involves experts from various fields, such as AI, human-computer interaction, data

mining, statistics, decision support systems, marketing, and user behavior [183].

Furthermore , the renaissance of AI in the last decade has attracted much atten-

tion from every corner of the world. In this golden age of AI, global funds and efforts

have been unprecedentedly devoted to AI research. In particular, machine learning

approaches [18] have dominated AI research in almost all areas, including natural

language processing (NLP), machine translation (MT), computer vision (CV), and

game playing. Ever since the world champion players of Go, an ancient strategy

game, were beaten by Google’s AlphaGo AI in 2017 [198, 200], machine learning

has taken center stage. The abovementioned companies have embraced AIespecially

machine learning techniquesand most have evolved into AI-first companies to extend

their business. RSs, as one of the most widely used AI systems, have been integrated

into daily life for a long time. Moreover, the machine learning approach plays the

most significant role in RS evolution.
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1.1.1 Recommender Systems

RSs are software, tools, and techniques that provide suggestions for items that

are most likely to be of interest to a particular user [184]. A variety of techniques

have been proposed as the basis for RS, such as collaborative filtering (CF) and

content-based filtering (CBF), as well as knowledge-based and demographic tech-

niques. Therein, knowledge-based RSs require heavy expertise and demographic

techniques involve privacy [184]; these factors heavily limit their development and

deployment. Therefore, we only introduce CF and CBF, the two most widely used

approaches in current RSs.

Collaborative Filtering (CF)

CF [150,206] is the most widely used technique in RSs. Briefly, CF is a method

of making automatic predictions (filtering) about the interests of a user by collecting

preferences or taste information from many users (collaborating). The underlying

assumption of the CF approach is that if person A has the same opinion as person B

on a topic, then person A is more likely to have a similar opinion to person B than a

randomly chosen person. The research and development company Xerox PARC took

the first step in this direction when they incorporated user actions and opinions into

a message database and search system called Tapestry [58]. This model is known

as pull-active CF because it is the responsibility of the user who desires recom-

mendations to actively pull the recommendations from the database [194]. Resnick

et al. [181] designed the GroupLens system, which is mainly used to help readers

filter the content in which they are interested; they must then score ratings over

this filtered news. The basic assumption is that if a reader is interested in certain

topics, she or he will be interested in those topics again in the future. The major

difference between Tapestry and GroupLens is that Tapestry filters information ac-

cording to the trusted users specified by a target user, whereas GroupLens releases
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this limitation and can match similar users automatically. Nowadays, CF is widely

used in many areas, such as online shopping, spam filtering, and movie recommen-

dation; therefore, the convenience generated by the CF technique can be enjoyed by

the general public. In contrast to traditional information retrieval techniques, CF

possesses the following advantages:

• User coupling: CF can effectively use feedback from similar users to learn

the preferences of a target user, which relieves the data insufficiency problem

of a single user.

• Content independence: CF can detect similarity over heterogeneous prod-

ucts without involving their content (e.g., descriptions, attributes, and im-

ages).

• Serendipity: CF can find potentially required items that are dissimilar to

the content of users’ historically chosen items; thus, it may find interests that

users were unaware they have.

Although CF methods have been successfully applied to many areas, they still pos-

sess some disadvantages, which include [206]:

• Cold start: The CF approach often requires a large amount of existing data

on a user to make accurate recommendations.

• Scalability: In many real-world environments, millions of users and items

exist. Thus, large amounts of computational power and storage are often

necessary to run recommendations.

• Sparsity: The number of items in a real-world RS is often extremely large.

The most active users will only have rated a small subset of the overall items.

Thus, even the most popular items have very few ratings.
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Content-based Filtering (CBF)

Another common type of RS is CBF [43]. CBF is based on the attributes or

descriptions of items and a profile of users’ preferences. In CBF, the designed algo-

rithms attempt to recommend items that are similar to those that a user has liked

in the past (or is examining presently). In particular, various candidate items are

compared with items previously selected by the user; the most similar items are

recommended. Basically, these methods use an item profile that characterizes the

item within the system. The system creates a content-based profile of users based

on selected item profiles. Machine learning techniques such as Bayesian classifiers,

cluster analysis, decision trees, and artificial neural networks can be employed to

estimate the probability of how a user tends to like an item. The CBF approach is

often used in areas with rich content features, such as news recommendation. Pan-

dora Radio is a popular example of a content-based RS that plays music with similar

characteristics to that of a song provided by the user as an initial seed. Moreover,

numerous content-based RSs are aimed at providing movie recommendations, in-

cluding Rotten Tomatoes and Internet Movie Database. When compared with CF

techniques, CBF possesses the following advantages advantages [43]:

• User Independence: CF methods require ratings from other users to locate

the nearest neighbors (i.e., users deemed to have similar tastes because they

rated the same items similarly). Then, only the items that are most liked by

the neighbors of the active user are recommended. By contrast, CBF solely

exploit feedback provided by target users to build the user profile.

• Interpretability: Interpretations of how RSs make recommendations can be

provided by explicitly listing content features or descriptions that resulted in

an item appearing in the recommendation list. These features are indicators

for deciding whether to trust a recommendation. By contrast, CF-based RSs
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are black boxes, because the only explanation for an item recommendation is

that unknown users with similar tastes have liked that item.

• New item: : CBF methods are capable of recommending items not yet rated

by any user. Consequently, they do not suffer from the aforementioned cold

start problem, which affects the CF approach because CF relies solely on users’

preferences for making recommendations. Therefore, until an item is rated by

a substantial number of users, CF methods would not be able to recommend

it.

Nonetheless, CBF approach also has several disadvantages [43]:

• Limited content analysis: CBF has a natural limit to the number and

type of features that are associated, whether automatically or manually, with

the objects they recommend [138]. Domain knowledge is often required; for

example, for movie recommendations, the system must know the actors and

directors. No content-based RS can provide suitable suggestions if the ana-

lyzed content does not contain enough information to discriminate items that

users like or do not. Some representations capture only certain aspects of the

content, but there are many others that would influence a user’s experience.

For instance, often, not enough information exists in the word frequency to

model user interests in jokes or poems, whereas techniques for affective com-

puting would be most appropriate. Again, for Web pages, feature extraction

techniques from text completely ignore aesthetic qualities and additional mul-

timedia information.

• Over-specialization: CBF has no inherent method for finding something

unexpected. As a result, CBF-based RSs tend to suggest items that are highly

matched against the user profile; therefore, users will have items recommended

to them that are similar to those already rated. This drawback is also called a
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lack of serendipity, which highlights the tendency of content-based systems to

produce recommendations with a limited degree of novelty. CBF rarely finds

anything novel, which limits its range of useful applications.

• New user: CBF requires sufficient user feedback before it can genuinely un-

derstand user preferences and provide accurate recommendations. Therefore,

when no user feedback is available, a CBF-based RS cannot provide reliable

recommendations for new users.

1.1.2 Recommendation Data Modeling with Machine Learning

RSs are information processing systems that actively gather various types of data

to build recommendations. Data are primarily on the items to be recommended

and the users who will receive these recommendations. However, because the data

and knowledge sources available for RSs can be highly diverse, whether they can

ultimately be exploited depends on the recommendation technique [184]. Almost all

current machine learning methods are built on data, and the quality of parameter

estimation is largely dependent on the amount and structure of the data. This is

why the machine learning-based AI approach achieves tremendous success in the

age of big data. An RS is a typical AI application built on various types of data,

including ratings, attributes, text, images, networks, videos, audio, and sequences.

Numerous corresponding machine learning methods are available for managing these

data types to model an RS:

• Rating: Ratings are the most elementary data in RSs. Explicit ratings, such

as five-star ratings, express user preferences over products with different levels,

which are the most frequently used data in the CF approach. However, explicit

ratings are not always available, whereas implicit ratings such as click logs and

dwell time, are the more easily obtained. For instance, an RS may consider

navigating to a particular product page an implicit sign of preference for the
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items shown on that page. Explicit ratings are often viewed as numeric values

or categorical values that can be modeled using bilinear models, such as matrix

factorization (MF) [117], and neural models, such as a restricted Boltzmann

machine (RBM) [189]. Implicit ratings do not contain explicit preference levels;

thus, they are often modeled using order relation [178]. Machine learning

methods, including learning to rank [23], and heteroscedastic models [89], have

been employed to model implicit ratings.

• Attributive data: Attributes are the most frequently used features in data

analytics. Item attributes such as price and weight, and user attributes such

as age, sex, and occupation, can be used to construct a content-based and

demographic RS. Machine learning methods, such as linear models [148], factor

analysis [101], and clustering [237], are available to manage these attribute

data. Moreover, attributes often consist of numerical and categorical data;

therefore, we proposed more advanced neural models [98] to manage such

mixed data.

• Textual data: Reviews, comments, and descriptions are typical textual data

in RSs. CBF and sentimental analysis are two representative techniques that

consume these textual data. In machine learning, topic models such as latent

semantic analysis (LSA) [120]and latent Dirichlet allocation (LDA) [19], and

more word embedding models such as continuous bag-of-word (CBOW) [152]

and skip-gram [153], are powerful tools for modeling and analyzing textual

data. Moreover, most current NLP approaches are based on machine learning

models, which can be employed to manage these textual data.

• Image data: Pictures of an item are the most straightforward element used

to attract users. Visual sentimental analysis [245] has become an emerging

research topic for analyzing user preferences. However, understanding the
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semantics of an image was not an easy task a decade ago. With the rise of deep

learning, machines have achieved comparable performance against humans in

some specific tasks, such as the classification task on ImageNet [118]. Therein,

convolutional neural network (CNN)-based models have dominated the areas

of image processing and CV. In particular, VGGNet [201] and ResNet [71] are

two of the most representative CNN models of recent years.

• Relational data: RSs have a primary relation over users and items. Addi-

tional relations, including social relation, trust relation, and item relation, are

often incorporated into RSs to manage the cold-start problem and improve

recommendation accuracy. For example, social RSs [67] aim to present the

most relevant and attractive data to the target users by coping with their so-

cial relationships. The machine learning methods for relational data have been

well studied, including relational learning [56], random walk [51], and network

representation learning [68].

• Sequential data: User selections in a specific time period are often not in-

dependent. For example, a user tends to select different but relevant products

in a transaction. As a result, session-based CF aims to model the depen-

dency and transition over the item sequence within the session context, and

then calculates the scores for potential next items to generate the rank. Time

series analysis (TSA) [21] is the most classic method of modeling sequential

data. Markov chain (MC) is another straightforward method of modeling the

first-order transition over sequential data [32]. In deep learning, recurrent

neural networks (RNNs) are the most effective method of modeling sequential

data. Recently, an RNN was successfully applied for session-based recommen-

dation [76].

Obviously, RSs are tightly coupled with all types of data, and the machine learning
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approach has become the primary technique for modeling RSs in this recommenda-

tion age driven by the exploitation of complex data.

1.2 Challenges in Modeling RSs

To develop the research on existing and emerging RSs, numerous challenges must

be confronted. In this thesis, we present these challenges from three aspects: (1)

data characteristics; (2) user behavior; and (3) information coupling.

1.2.1 Challenges from Data Characteristics

Because RSs are a type of AI system, data are fundamental for making an RS

learn user preferences and item features. Therefore, the quality of data has a direct

impact on the recommendation performance. However, several typical challenges

exist that must be addressed in real-world recommendation data.

• Sparsity and imbalance: In real-world RSs, user data often follow a power-

law distribution (i.e., a short head and long tail); that is, the majority of users

do not possess sufficient data for their preferences to be accurately learned.

Many commercial RSs are based on large datasets. As a result, the user-item

matrix used can be extremely large and sparse, which generates challenges in

the recommendation. Similarly, items have the same problem. The major-

ity of items do not receive sufficient feedback from users before they can be

recommended to users with similar tastes.

• Cold start: Long-tail distributions imply that the majority of users and

items are cold-start in nature. Cold-start users usually have provided little

feedback or sometimes none at all. For a cold-start user, neighborhood-based

methods do not have sufficient data to find suitable neighbors. For a model-

based method such as MF, long-tail users have provided very little feedback on
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popular items; therefore, the learned factors of these users tend to be similar;

for this reason, they are not able to clearly represent personal preferences.

Similarly, cold-start items usually receive little feedback or sometimes none at

all. As a result, the item profile cannot be learned well from user feedback.

• Heterogeneity: In RSs, items may belong to different categories and fields,

and thus they often have different features. As a result, they cannot be mod-

eled with the same feature specification or distribution. Similarly, user behav-

ior possesses heterogeneity because of the differences in age, sex, occupation,

and characteristics. Most current RSs are modeled under an identical distri-

bution assumption over all items and users, which often fails to represent the

heterogeneity over users, items, and domains. As a result, they often lead to

poor recommendation effects. Therefore, a more effective modeling method

must be sought to represent heterogeneous information.

• Scalability:As the increase in feedback from old users and continually joining

users and items, the data in an RS becomes increasingly large. Traditional RSs

seldom respond in real time; therefore, how to quickly and efficiently deal with

these data in a commercial RS is a challenge. Thus, one of the key elements

for a practical application is how to implement an efficient algorithm that can

significantly reduce time or space complexity and work in a parallel mode.

1.2.2 Challenges from User Behavior

In RSs, users are the ultimate targets to provide recommendations to. In contrast

to items, users possess subjective feelings and complex social relationships, which

lead to quite different user behaviors. Because users are one of the core elements in

an RS, we list the typical challenges generated by user behavior as follows.

• Social behavior: In a society, people are often influenced by various social
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factors when making decisions. Therefore, social information is extremely help-

ful for improving the recommendation results and relieving the data sparsity

and cold-start problems. In addition, people are constantly engaged in social

activities (online or offline), because social activities usually involve multiple

people, and each person’s preferences are different; therefore, how to ratio-

nally represent group preferences is one of the great challenges in designing

group-based RSs.

• Malicious attack: Because of the open environment of the Internet, RSs

must confront false information and malicious attacks. For example, a shilling

attack refers to a group of spam users intentionally providing fake feedback

(e.g., much higher or lower ratings than a true rating to bias the ratings

and recommendations for them). In particular, the information of tail items

in a long-tail distribution is limited by the lack of feedback from users. As a

result, they suffer attacks much more easily from a few fake ratings. Therefore,

designing RSs that are robust to malicious attacks is an inevitable challenge

for real applications.

• Privacy breach: One approach to enhance the modeling of user profiles is to

integrate user demographics, such as age, sex, occupation, and income. How-

ever, this engenders certain risks that may limit the uptake of an RS, one of

which is a privacy breach. Privacy risk is mainly caused by the need for an

RS to collect and store personal information about their users. Indeed, to pro-

vide personalized recommendations, an RS must possess information about its

users encapsulated in user models. This information serves as the basis for gen-

erating recommendations, and generally, the quality of the recommendations

is correlated with the amount, richness, and freshness of the underlying user

data. Therefore, the sensitivity of user information and missing information
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are inevitable challenges in designing an RS.

1.2.3 Challenges from Information Coupling

Traditional RSs only consider a single type of data, such as ratings. However, a

single type often cannot provide sufficient information, as presented in the challenges

of data characteristics. To construct more advanced RSs, multiple types of infor-

mation from multiple data sources must be coupled to obtain more comprehensive

knowledge. Some typical challenges of information coupling are listed as follows.

• Cross-domain sharing: A key concern with RS modeling is whether the sys-

tem is able to learn user preferences from users’ actions regarding one domain

and use them across other domains. When the system is limited to recom-

mending items in the domain that the user is already involved in, the value

from the RS is significantly less than recommending items from other domains

that the user is not involved in. For example, recommending news articles

based on news browsing is useful, but would be much more useful if music,

videos, products, discussions, and other sources from various services can be

recommended based on news browsing habits. How to share information be-

tween domains and deal with the heterogeneity between domains are the key

challenges.

• Context awareness: Traditionally, RSs only deal with two types of entity,

users and items, and do not put them into a context when generating recom-

mendations. These RSs focus on recommending the most relevant items to

individual users and do not consider any contextual information, such as time,

place, and the company of other people (e.g., for watching movies or dining

out). However, in many applications, it is also crucial to incorporate the con-

textual information into the recommendation process to recommend items to

users under certain circumstances. For example, on weekdays, a user might
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prefer to read world news in the morning and the stock market report in the

evening, and on weekends she or he may prefer to read movie reviews. The

key challenge is how to precisely capture user interactions in various contexts.

• Multi-information integration: Users have different points of interest and

the hotspots of Internet activity are dissimilar; thus, the amount of data gen-

erated in a variety of activities also differs greatly. In addition, users tend to

be involved in multiple systems across multiple areas, such as online shopping,

real estate, stocks, and games. Therefore, how to effectively connect these dis-

tributed data sources and integrate multi-information from multiple sources

and multiple systems are the key challenges.

• Multi-criteria consideration: Instead of developing recommendation tech-

niques based on a single criterion, such as the overall preference of a user for an

item, multi-criteria systems attempt to predict a rating by exploiting prefer-

ence information with multiple criteria that affect the overall preference value.

The additional information provided by multiple criteria could help to improve

the quality of recommendations, because it would be able to represent more

complex preferences of each user. Increasing numbers of researchers propose

building RSs with multi-criteria considerations. The main challenges are how

to jointly model multiple relevant but inconsistent objectives as well as how to

find the optimal multi-objective solution for the best recommendation results.

1.3 Research Objectives

This thesis is mainly devoted to modeling non-IID recommender systems using

machine learning approaches, including the study of how to deal with the aforemen-

tioned critical problems and challenges in current RSs, as well as the design of an

advanced RS with non-IID learning techniques. This research does not only promote
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the design of new models and algorithms in theory, but also improves user experi-

ence and profit models, and even extensively influences the evolution of technology

and society.

More specifically, this thesis focuses on studying the non-IIDness from multiple

aspects of recommendation problems, including the non-IID modeling heterogeneity

and coupling on users, items, and their interactions. Moreover, some prototypes of

non-IID RSs are constructed to assess the feasibility, effectiveness, and performance.

1.3.1 Non-IID Modeling Aspects on Recommendation Data

In the literature, non-IID data has two forms : not identically distributed and

not independently distributed. The first form generally refers to the heterogeneity

in complex data. The second refers to the coupling relationships between and within

values, attributes, and objects. Therefore, to study non-IID RSs, we first present

the non-IID modeling aspects of recommendation data.

Heterogeneity

Heterogeneity is built into various aspects; neither users or items are identically

distributed. The following list explores research scenarios of the heterogeneity of

users and items as well as the heterogeneity between users and items [31].

• Heterogeneity of users: Each user shares her or his own attributes, char-

acteristics, preferences, behaviors, and intents in the ratings. Simply treating

all users as identically distributed may cause failure in understanding the per-

sonalized characteristics of each user, and her or his personalized demand and

intent in the recommendation.

• Heterogeneity of items: One item differs from another in terms of type,

attributes, categories, domains, and so forth. Specific item characteristics form

various attractive points to different users and user ratings.
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• Heterogeneity of user/item attributes: Each user and item attribute is

different. Each user attribute describes one respective aspect of user demo-

graphics, characteristics, group, preference, behavior, and intent. Similarly,

each item attribute draws a picture of a respective aspect of item categories,

types, characteristics, domains, and so on. Each user/item attribute is not

identically distributed; it follows its own distribution, and thus, must be han-

dled accordingly.

• Heterogeneity between users and items: Users are highly different from

items, and cannot be assumed to follow the same distributions as usually

assumed in link prediction. Assuming that they adopt similar latent matrices

or can be modeled in the same manner fails to capture the specific features of

users and items.

Many existing methods do not consider the abovementioned discussions about het-

erogeneity in their recommendations, which may result in meaningless outcomes and

misleading recommendations. Moreover, it would not be possible to provide truly

personalized recommendations when the personalized characteristics are ignored in

the modeling.

Coupling

Heterogeneity modeling is a critical step forward in recommendation research

to capture the characteristics and complexities in RSs. Another critical matter is

capturing the explicit and implicit coupling relationships. Here, couplings refer to

any relationships or interactions that connect two or more aspects, which could be

between inputs or between inputs and outputs [30]. Couplings in recommendation

problems represent implicit or explicit connections between users, between items,

and between users and items, for any reason or in any respect [31].
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• User-user couplings: This refers to the couplings both within and between

users, which are further embodied through: (1) intra-user attribute couplings,

showing the relationships between the values of a user attribute, such as cou-

plings between user preferences, groups, domains, behaviors, or social rela-

tionships; (2) inter-user attribute couplings, showing the connections between

user attributes, such as user ages and their positions; and (3) user couplings

between users or between user groups.

• Item-item Couplings: Similar to user-user couplings, these are couplings

within and between items that consist of: (1) intra-item attribute couplings,

(2) inter-item attribute couplings, and (3) item couplings between items or

between item categories/domains.

• User-item couplings: These refer to the couplings within and between user-

item pairs or clusters, which are embodied through the following aspects: (1)

explicit user-item couplings indicated by user ratings and comments on items;

and (2) implicit user-item couplings, showing the influence of or connections

between a user’s attributes and the user-rated item attributes.

• Hierarchical Couplings: In addition to the abovementioned types (aspects)

[30] of couplings, couplings are often presented in terms of certain hierarchies.

Hierarchical couplings exist in attribute values, attributes (for both users and

items), objects (users and items), and object groups (user groups or item

categories).

This thesis studies the modeling of users and items, and the tight connection

between the ratings given by a user to an item and the characteristics of users and

items. This involves an in-depth understanding of the nature of recommendation

data; that is, the heterogeneity and couplings.
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1.3.2 Non-IID RS Modeling

As previously described, many classic RSs experience significant challenges, whereas

few breakthroughs and systematic innovations under an IID assumption have been

made. This thesis aims to design a new generation of RSs by modeling the non-

IIDness over users, items, and their interactions. In particular, this thesis employs

machine learning approaches to the non-IID modeling.

Figure 1.1 depicts the six representative RSs, namely the group-based RS (GBRS),

social network-based RS (SNRS), cross-domain RS (CDRS), session-based RS (SBRS),

multi-objective RS (MORS), and attraction-based RS (ABRS), to study the non-IID

modeling from the abovementioned three perspectives. To model these non-IID RSs,

we employ various machine learning techniques. For each non-IID RS, we list the

main modeling items with reference to the non-IID modeling aspects, as presented

in Section 1.3.1.

As illustrated in Figure 1.2, this thesis applies the machine learning approach to

modeling the abovementioned non-IID RSs, where we list the key components for

each non-IID RS. The underlying machine learning techniques used for modeling

these components are listed in the right-hand part of the diagram.

Modeling Non-IID RSs from a User Perspective

Users are one of the most elementary modeling targets in RSs. Modeling non-

IIDness on users aims to capture interactions, connections, and influences between

users in terms of users, user attribute values, user attributes, and user groupings.

In this thesis, we study two representative non-IID RSs that mainly consider the

non-IID modeling from a user perspective, namely a GBRS and an SNRS.

GBRS Because of the social nature of human beings, various group activities are

observed throughout life, such as seeing a movie or planning a trip. Recently, the RS
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Figure 1.1 : Overview of the non-IID RSs targeted in this thesis. Each modeling

item for these systems is marked with one or two icons. Each icon corresponds to

one non-IID modeling aspect shown in the right-hand section.
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Figure 1.2 : Overview of machine learning methods used to model non-IID RSs in

this thesis. Each listed item for these systems is marked with one or two icons. Each

icon corresponds to one machine learning approach listed in the right-hand section.
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community has begun to study group behavior to make group recommendations [95].

In particular, each member of a group often has different opinions on the same items;

therefore, the main challenge with a GBRS is to satisfy most group members with

diverse preferences. Obviously, this cannot be achieved through individual-based

recommendation methods. The mainstream approaches of GBRS attempt to ag-

gregate group information from individual user models [146]. These methods can

be classified into two types of model that are differentiated by the timing of data

aggregation. The first is called group preference aggregation (GPA), which first

aggregates all members’ ratings into a group profile, and then any individual-based

CF approach can be used if it regards groups as multiple virtual individual users.

By contrast, the second type of model is called individual preference aggregation

(IPA), which first predicts the individual ratings over candidate items, and then ag-

gregates the predicted ratings of members within a group using predefined strategies

to represent group ratings.

In this thesis, we provide an in-depth analysis of existing GBRSs and show their

deficiencies in integrating individual ratings or models. The key concern is that cur-

rent GBRSs still model each group member independently instead of modeling the

coupling between them leading to the group selection. Therefore, to improve current

GBRSs, the key points are modeling the heterogeneity between group members and

the coupling relationship between group members leading to the final group decision,

as illustrated in Figure 1.1. In this thesis, restricted Boltzmann machine (RBM)-

based models, as illustrated in Figure 1.2, are employed, which aims to model the

heterogeneity between group members and learn a group preference representation

from the group-level feedback data.

SNRS Social network sites [22], such as Facebook and Twitter, are proliferating

and attract millions of users to write blogs, post messages, and share photos. This
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rapid growth intensifies the phenomenon of social overload, where users of social

media are exposed to a huge amount of information and participate in vast numbers

of interactions [67].

The marriage between social media and RS has many potential benefits for both

sides. For example, social media introduces many new types of data and metadata,

such as tags and explicit online relationships, which can be used by an RS to en-

hance their effectiveness. Furthermore, RSs are crucial for social media websites

to enhance the adoption and engagement by their users, and thus play a crucial

role in the overall success of social media [67]. Each user selection is influenced by

other relevant users with social relationships, which forms influential user contexts.

In recommendation problems, the coupling between users, items naturally form a

multi-relational learning problem.

However, most current SNRSs fail to appropriately measure the strength of in-

fluence from different users as well as fail to appropriately model all the influence

related to users’ selections. As illustrated in Figure 1.1, modeling the influence of

coupled users is the key problem in designing an SNRS. In this thesis, we aim to

build an SNRS to capture the high-order influence from relevant users, items, and

their interactions. Specifically, we build user and item influential contexts to embed

influence from relevant users and items, as depicted in Figure 1.2.

Modeling Non-IID RSs from an Item Perspective

Items are another of the most elementary modeling targets in RSs. Modeling the

non-IIDness on items aims to capture the connections and influence between items,

item attributes, item attribute values, and item categorization. In this thesis, we

study two representative non-IID RSs that mainly consider the non-IID modeling

from an item perspective, namely a CDRS and an SBRS.
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Modeling CDRSs A user usually has sufficient experience in some focused do-

mains but lacks experience in other domains. An RS that can recommend potentially

desirable items to users is more useful in unfamiliar domains. However, the cold-

start problem will inevitably be encountered in unfamiliar domains where almost no

available data exists to learn user preferences. Because users have different inter-

ests, their rich data domains and deficient data domains also differ, and therefore,

it is sensible to leverage users’ feedback data over multiple domains to enable the

inference of user preferences in unfamiliar domains. Based on this idea, CDRSs have

emerged as an important research topic in recent years.

Current CDRSs explicitly or implicitly assume the IIDness of the items in differ-

ent domains, which may lead to some problems when transferring knowledge from

one domain to another because of the domain heterogeneity. As illustrated in Fig-

ure 1.1, modeling the heterogeneity between domains and leverage knowledge from

auxiliary domains in terms of their intrinsic hierarchical couplings are the key prob-

lems in designing a CDRS. In this thesis, we propose an improved solution to model

domain heterogeneity and their couplings. In particular, as depicted in Figure 1.2,

we design an irregular tensor factorization model to deal with both explicit and

implicit feedback data over multiple domains in case the standard tensor factoriza-

tion models cannot be directly used for the different numbers of items in different

domains.

SBRSs Most classic RSs do not consider the session context. As a result, they

may recommend items that are quite irrelevant to the current context. Moreover,

these RSs tend to repeatedly recommend similar items to users because of the rel-

evance of historical choice. Factor models, such as MF, and neighborhood meth-

ods [117], such as item-based CF [193], are the two most prevalent approaches in

RSs. However, they are not immediately applicable to an SBRS because they do
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not consider sequential relevance over user choices. As a result, these RSs tend to

produce homogeneous recommendations similar to their historical profiles or recent

purchases. In practice, users tend to have different requirements in the context of

changing sessions; therefore, the homogeneous recommendation will greatly degrade

user satisfaction and business benefits.

Sequential recommendation typically aims to predict the next user action. Early

approaches for predicting the next user actions were based on sequential pattern

mining techniques [244]. Later, more sophisticated methods based on Markov mod-

els were proposed and successfully applied to the real problem [32]. Most recently,

the use of deep learning approaches based on neural networks [76] was explored

as another solution. All of these methods assume a rigid-order sequence that does

not fit many real-world cases. Moreover, next-item recommendation depends not

only on the current session context, but also on historical sessions, which are often

neglected by current SBRSs.

Therefore, we propose modeling the coupling of user choices within a session

and the coupling of user choices across sessions, as specified in Figure 1.1. To deal

with the deficiencies of recommendation in traditional RSs without considering the

couplings of the choices within a session and between the previous sessions and

current session, this thesis studies modeling a cross-session context to build a more

effective and efficient personalized SBRS. As illustrated in Figure 1.2, we construct

an SBRS that jointly models intra- and inter-session context for recommending the

next item.

Modeling Non-IID RSs from an Interaction Perspective

The most interesting and complicated modeling of non-IID RSs is the implicit

interactions. This is highly complicated because there may be multiple objectives

and hierarchical non-IIDness embedded in these interactions. In this thesis, we
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study two representative non-IID RSs that mainly consider the non-IID modeling

from an interaction perspective, namely an MORS an ABRS.

MORSs In most RSs, a single objective is often set up for optimization; for ex-

ample, an overall evaluation or rating of an item by a user. In some recent studies,

this assumption has been considered as limited [4], because the suitability of the

recommended item for a particular user may depend on more than one aspect when

making the choice [5]. Particularly in systems where recommendations are based on

the opinion of others, the incorporation of multiple criteria that can affect the users’

opinions may lead to more accurate recommendations.

To date, most research for recommender systems has focused on improving the

accuracy of RS. However, simply improving the accuracy by one or two percent will

not result in an improved user experience or greater business benefit. Recommen-

dation accuracy may not always completely align with recommendation usefulness;

thus, researchers have proposed several alternative measures, including coverage,

diversity, novelty, serendipity, and more, to evaluate the performance of RSs. As

a result, modern RS implementation may use multiple performance criteria when

deciding on the final recommendation results. Therefore, it is demanding to design

an MORS that can simultaneously optimize multiple recommendation performance

objectives.

According to the abovementioned analysis, the key points for designing an MORS

are modeling the heterogeneous but related objective for each aspect, as well as the

coupling between these objectives, which lead to the final decision. In this thesis,

we study the recommendation problem for users and items in the long tail to tackle

the challenges of popularity bias and shilling attacks. To tackle these challenges,

we set two modeling goals: one goal is to model the credibility of each choice in

terms of user reputation and the other is to model the specialty of each choice over
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items, as specified in Figure 1.1, to improve the quality of recommendations for

items and users in the tail of a distribution. Accordingly, a coupled mutual regu-

larization model is designed to jointly optimize these two objectives (i.e., credibility

and specialty) on user choices, as illustrated in Figure 1.2.

ABRSs The CF approach generally cannot work in the case of new items , namely

on theespecially articlesthat have not been followed by any other users. To some

extent, CF actually recommends second-hand information for a target user, because

it can only recommend articles when other users have read them. To overcome

this deficiency of CF for new articles, the CBF approach finds articles through the

semantic similarity. In fact, users often read an article because they are attracted

by a very small point, such as the name of a person in a news story, an interesting

keyword in a paper, or some touching words in a song. However, current CBF

approaches cannot interpret the most attractive point leading to user selection.

Moreover, attraction modeling is not limited to textual data as the most common

data in content-based RSs. For other more complex content types, such as music

and images, a CNN can be applied to learn their representations and then learn the

attraction over them.

In this thesis, we propose an ABRS, which aims to model and infer personal

attraction on content. This raises the following question: what is the specialty of

attraction that needs to be modeled? First, the attraction is the highlights that

largely lead to a person’s selection and decision. For example, people often cannot

recite a whole poem, but can always recall some impressive sentences; similarly,

people may not remember a whole song, but can hum some touching lyrics. These

highlights make a person attracted to a poem or song. Second, the attraction is a

subjective feeling that often differs from person to person.

Existing CBRSs can recommend new content according to similarity, but they
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are not capable of interpreting why users are attracted to the content. To build

an interpretable CBRS, we propose attraction modeling to learn and track user at-

tractiveness. As depicted in Figure 1.1, the key point for designing an ABRS is to

model the filter of personal attraction over content, which often requires modeling

hierarchical coupling between the user and content. Specifically, we construct a

hierarchical attraction model to capture users’ multilevel attractiveness on textual

content and a multimodal attraction model to capture users’ multi-aspect attrac-

tiveness on movies, as illustrated in Figure 1.2.

1.4 Thesis Organization

This thesis is organized into five parts:

• Part I: This part introduces the background and preliminaries of the research,

and consists of the following three chapters.

– Chapter 1: This chapter presents the research background and research

objective for this thesis.

– Chapter 2: This chapter provides a literature review of the existing RS

models and algorithms that are most directly related to the content stud-

ied in this thesis to elucidate the machine learning modeling techniques

used in subsequent chapters.

– Chapter 3: This chapter presents the necessary prerequisite knowledge,

including basic machine learning models and evaluation metrics for rec-

ommendation results, to facilitate illustrating the models and algorithms

in subsequent chapters, as well as the evaluation methods of experiments.

• Part II: This part studies the non-IID RS modeling from a user perspective, in

which we model two representative non-IID RSs, namely a GBRS and SNRS:
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– Chapter 4: This chapter provides an in-depth analysis of existing GBRSs

and shows their deficiencies in modeling heterogeneity and coupling be-

tween group members for making group decisions. A deep neural network

is designed to learn a group preference representation, which jointly con-

siders all members’ heterogeneous preferences.

– Chapter 5: This chapter builds an SNRS to capture the high-order cou-

pling relationships between users and items. Specifically, we build user

and item influence-aware contexts to embed the influence from relevant

users and items.

• Part III: This part studies the non-IID RS modeling from an item perspective,

in which we model two representative non-IID RSs, namely a CDRS and SBRS:

– Chapter 6: This chapter studies a CDRS modeled by irregular tensor fac-

torization to more effectively capture the coupling between heterogeneous

domains while learning the domain factors for each domain.

– Chapter 7: This chapter studies modeling a cross-session context to build

a more effective and efficient SBRS. In particular, this SBRS jointly con-

siders intra- and inter-session contexts when recommending the next item.

• Part IV: This part studies the non-IID RS modeling from an item perspective,

in which we model two representative non-IID RSs, namely an MORS and

ABRS:

– Chapter 8: This chapter studies an MORS to improve the quality of

recommendations for items and users in the tail of a distribution. We

propose a coupled heteroscedastic MF model to jointly optimize two ob-

jectives: credibility and specialty.

– Chapter 9: This chapter proposes attraction modeling for interpreting
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recommendations. We construct two ABRSs: one is modeled to cap-

ture users’ multilevel attractiveness on textual content and the other is

modeled to capture users’ multi-aspect attractiveness on movies.

• Part V: A brief summary of the thesis contents and its contributions are

provided in the final part. In addition, recommendations for future studies are

given.

– Chapter 10: This chapter summarizes the research contributions of this

thesis.

– Chapter 11: The final chapter indicates some open challenges in current

non-IID RSs. Accordingly, the potential future directions for improving

existing non-IID RSs are presented.
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Chapter 2

Literature Survey

To facilitate understanding the non-IID RS modeling techniques proposed in subse-

quent chapters, this chapter provides a literature review of the existing RS models

and algorithms that are most directly related to the content studied in this thesis.

2.1 Basic Recommendation Techniques

Because CF and CBF are two of the most extensively studied approaches in RSs,

this section provides a brief overview of each. Moreover, because both approaches

have some limitations (as presented in Section 1.1.1), we also introduce some hybrid

RSs that simultaneously apply CF and CBF for recommendation. These basic

techniques will be used and extended to construct the non-IID RS in subsequent

chapters.

2.1.1 CF

The CF approach can be divided into neighborhood- and model-based methods.

In particular, latent factor models such as MF and deep learning models such as

multilayer neural networks, are the two dominant methods for model-based CF.

Neighborhood Methods

The origin of CF [194] is found in the neighborhood-based approach [206], which

has been successfully applied in a number of real-world commercial systems [193].

The underlying assumption of the CF approach is that if person A has the same

opinion as person B on an issue, then person A is more likely to have a similar
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opinion with person B than a randomly chosen person. In general, it can be sub-

divided into two categories: user-based nearest neighbor and item-based nearest

neighbor [206]. Tapestry [58] developed at Xerox PARC, took the first step in this

direction by incorporating user actions and opinions into a message database and

search system. This model is known as pull-active CF, because it is the responsibility

of the user who desires recommendations to actively pull the recommendations from

the database. Resnick et al. [181] designed the GroupLens system, which is mainly

used to help readers filter the content in which they are interested, and they must

score ratings over this filtered news. The basic assumption is that if a reader is

interested in some topics, she or he will be interested in those topics again in the

future. However, this approach does not work well when the data is sparse. In fact,

the majority of users provide very little data because of long-tail distribution [89],

therefore, it is often impossible to obtain feedback from neighbors on unpopular

items and inactive users to generate accurate prediction results.

Latent Factor Models

With the rapid development of machine learning, model-based approaches have

become increasingly popular in recent years. Therein, latent factor models (LFMs)

are one of the most effective and efficient approaches for CF.

MF gained dominance in the area of recommendations and demonstrated its

superiority over neighborhood-based techniques when it won the Netflix Prize com-

petition [117]. The basic idea of MF methods is to fit the user-item rating matrix

using low-rank approximations and use it for prediction. To date, many MF meth-

ods have been proposed, such as probabilistic matrix factorization (PMF) [188] and

maximum-margin MF (MMMF) [205]. In addition to the MF approach, other mod-

els have achieved success in recommendations. Choice modeling [214] is somewhat

related to the recommendation problem; Hu et al. [89] proposed a latent feature-
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based Bayesian heteroscedastic choice model to represent the heterogeneities be-

tween users and items.

The MF-based approach is able to model a collection of dyadic relations, but

it has limitations in representing high-order relations (i.e., multi-way interactions).

A natural approach to modeling a high-order relation is to use a tensor to extend

the matrix (second order) model to a higher order space (i.e., tensor-based models).

Correspondingly, a high-order tensor can also be factorized in a collection of low-

rank factor matrices [114], namely tensor factorization. Karatzoglou et al. [106]

studied context-aware CF using a high-order SVD (HOSVD) model to represent the

relation of user-item-context, wherein each attribute of the context is modeled as a

mode of a regular tensor. Tag recommendation is a widely studies problem in Web

2.0; Rendle et al. proposed BPR-based tensor factorization models on user-item-tag

to learn optimal ranking [179, 180]. Time periods can be regarded as generalized

domains [47] that organize temporal observations according to time-period slices to

conduct temporal link prediction.

Deep Learning Approach

With the prevalence of deep learning techniques [14], RBMs, as the pioneer

of deep learning models, have been successfully applied in CF [55], and achieved

comparable performance to MF in the Netflix Prize competition [190]. He et al. [74]

presented a general framework named neural CF (NCF) by replacing the inner

product in MF with a neural architecture that can learn an arbitrary function from

data. NCF is generic and can express and generalize MF under its framework.

To supercharge NCF modeling with nonlinearities, the authors proposed leveraging

a multilayer perceptron to learn the user-item interaction function. Autoencoder

[112,219] is a very popular building block in deep learning. Autoencoder-based CF

(ACF) [163] is the first autoencoder-based collaborative recommendation model.
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Instead of using the original partial observed vectors, it decomposes them by integer

ratings [233]. Deep CF [131] is a general framework for unifying deep learning

approaches with a CF model. This framework makes it easier to utilize deep feature

learning techniques to aid collaborative recommendation. Based on this framework,

the authors proposed the marginalized denoising autoencoder-based [34] based CF

model (mDA-CF) to save the computational costs.

Attention mechanisms have been proven effective in various tasks such as machine

translation [8] and image captioning [221]. Its underlying assumption is that one only

focuses on selective parts where needed. Chen et al. [33] proposed an attentive CF

model by introducing a two-level attention mechanism to a latent factor model. The

attention model is an MLP consisting of item- and component-level attention. The

item-level attention is used to select the most representative items to characterize

users, whereas the component-level attention aims to capture the most informative

features from multimedia auxiliary information for each user.

2.1.2 CBF

Another common type of RS is CBF [43]. CBF is based on the attributes or

the description of items and a profile of users’ preferences. In CBF, the designed

algorithms attempt to recommend items that are similar to those that a user liked

in the past. In particular, various candidate items are compared with items previ-

ously selected by the user and the most similar items are recommended. Basically,

these methods use an item profile that characterizes the item within the system.

The system creates a content-based profile of users based on selected item profiles.

Machine learning techniques such as Bayesian classifiers, cluster analysis, decision

trees, and artificial neural networks can be employed to estimate the probability of

how a user tends to like an item. The CBF approach is often used in many areas

with rich content features, such as news recommendation. For example, Pandora
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Radio (http://www.pandora.com) is a popular example of a content-based RS that

plays music with similar characteristics to that of a song provided by the user as

an initial seed. Furthermore, numerous content-based RSs exist that are aimed at

providing movie recommendations, including Rotten Tomatoes and Internet Movie

Database.

Text Content Representation

Textual content is the most straightforward data used in CBF RSs. To obtain

insight into learning user preferences, an inevitable task is to find a good represen-

tation of the textual content. The vector space model (VSM) [192] is an algebraic

model for representing text documents (and any objects in general) as vectors of

identifiers, such as index terms. In the classic VSM, the term-specific weights in the

document vectors are products of local and global parameters. The model is known

as the term frequency-inverse document frequency (TF-IDF) model [192]. The bag-

of-words (BoW) assumption simplifies and represents a document as the bag of its

words, disregarding grammar and word order. Distributional semantic modeling

(DSM) is generally based on the distributional hypothesis that linguistic items with

similar distributions have similar meanings. Latent semantic analysis (LSA) [120]

and its successor, latent Dirichlet allocation (LDA) [19], are typical DSMs based on

the BoW assumption.

With the prevalence of deep learning, neural network-based methods have shown

power in terms of representation. Word2vec [152, 153] and Glove [171] are highly

successful word embedding models of recent years, which originated from neutral

language modeling [16]. In many NLP architectures, word embedding representa-

tion is close to fully replacing DSM representations. Word embedding is a word-level

representation, but it has inspired research work to create higher level embeddings,

such as sentence embedding [113] and document embedding [41]. In particular,
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Kim et al. [110] proposed character-level text modeling in terms of CNNs to learn

the article representation. These methods focus on content representation without

involving personal factors, whereas we aim to construct personalized content repre-

sentation per personal attraction. To capture user attraction in various granularities

of a document, such as word, sentence, and document levels, a hierarchical repre-

sentation of an article is necessary. Furthermore, the content in each level must be

highlighted to interpret the attraction to users. Yang et al. [242] proposed hierar-

chical attention networks for document classification, wherein two levels of attention

mechanisms are respectively applied at the word and sentence levels, enabling it to

attend to more or less important content when constructing the document represen-

tation. Denil et al. [46] used a CNN to transform word embeddings in each sentence

into an embedding for the entire sentence, wherein at the document level, another

CNN is used to transform sentence embeddings into a document embedding vector.

However, these methods mainly aim to determine salient words or sentences from

documents instead of consider personalized preferences.

Classic Methods

Because the success of document retrieval in VSMs depends on query construc-

tion by selecting a set of representative keywords, methods that help users to incre-

mentally refine queries based on previous search results have been the focus of much

research. These methods are commonly referred to as relevance feedback; therein,

Rocchio’s formula [191] is one of the most well-known algorithms adopted in CBF.

Some researchers have used a variation of Rocchio’s algorithm in a machine learning

context; for example, for learning a user profile from unstructured text [10, 170].

The goal in these applications is to automatically induce a text classifier that can

distinguish between classes of documents. The use of a latent semantic index (LSI)

for CBF has already been investigated in several research works [53], and it has been
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demonstrated to outperform other techniques, regardless of the application domain.

News recommendation [129] is a typical application of CBF with NLP techniques.

The initial attempts [154] are based on text mining. Kompan et al. [115] presented

an approach for fast content-based news recommendation by cosine-similarity search

and effective representation of the news. Apart from textual content, such as news

and Web pages, CBF can work with other types of feature. Pandora Internet radio

(http://www.pandora.com) is a well-known music recommendation engine, which

associates tracks with features extracted from the Music Genome Project. Exam-

ples of such features of tracks could be “feature trance roots”, “synth riffs”, “tonal

harmonies”, or “straight drum beats”. Users can initially specify a single example

of a track of their interest to create a “station”. Starting with this single train-

ing example, similar songs are played for the user. Jhanwar et al. [96] presented

a technique for content-based image retrieval using the motif co-occurrence matrix

(MCM). The MCM is derived using a motif transformed image, which are compu-

tationally inexpensive but sensitive to translation in image retrieval tasks.

Deep Learning Approach

A deep semantic similarity model (DSSM) [92] is a deep neural network widely

used in information retrieval. It is highly suitable for top-n recommendation [49].

DSSM projects different entities into a common low-dimensional space, and com-

putes their similarities with cosine function. DSSM-based personalized recommen-

dation (DSPR) [238] is a tag-aware personalized RS where each user and item are

represented by tag annotations and mapped into a common tag space. Cosine sim-

ilarity and softmax function are applied to decide the relevance of items and users.

A CNN is capable of capturing the global and local features as well as significantly

enhancing efficiency and accuracy. CNNs have been successfully applied in many CV

tasks. In CBF RSs, CNNs also play a critical role in learning features for images,
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text, music, and positions. Lei et al. [123] proposed a comparative deep leaning

model combining CNN and MLP for image recommendation. This network consisted

of two CNNs used for image representation learning and an MLP for user preference

modeling. It learns to rank user preferences in terms of two contrastive images (one

positive image that a user likes and one negative image that the user dislikes) against

a user. Wang et al. [227] investigated the influences of visual features on point-of-

interest (POI) recommendation, and proposed a visual content-enhanced POI RS by

employing a CNN to extract image features. The recommendation model is built on

PMF by exploring the interactions between: (1) visual content and latent user factor,

and (2) visual content and latent location factor. Van et al. [162] proposed using

CNN to extract features from music signals. The convolutional kernels and pooling

layers allow operations at multiple timescales. Gong et al. [59] built an attention-

based CNN system for hashtag recommendation in microblog. In particular, they

treat hashtag recommendation as a multi-label classification problem. The proposed

model consisted of a global channel and local attention channel, wherein the global

channel comprised convolution filters and max-pooling layers and all words were

encoded in the input of the global channel.

2.1.3 Hybrid CF and CBF

As discussed in Chapter 1, both CF and CBF have advantages and disadvantages.

Recent research has demonstrated that a hybrid approach combining CF and CBF

could be more effective in some cases. Hybrid approaches can be implemented

in several manners: by making content-based and collaborative-based predictions

separately and then combining them; by adding content-based capabilities to a

collaborative-based approach (and vice versa); or by unifying the approaches into one

model [3]. The side information about users and items would be beneficial if it were

incorporated into CF models. Bayesian MF with side information (BMFSI) [172]
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is extended from Bayesian probabilistic MF. As suggested by the name, BMFSI

is modeled as a combination of MF and regression against the side information

of users and items. The regression-based latent factor model (RLFM) [6] uses a

different strategy to incorporate side information. It assumes that the user latent

factor matrix is generated from the provided features (i.e., side information) of

users through regression, whereas the item latent factor matrix is generated from

the provided features of items through regression. Following this, both the user and

the item latent factor matrices are used as MF.

Lu et al. [140] proposed the content-based CF (CCF) approach for news topic

recommendation in Bing. By utilizing rich contexts and focusing on long-tail users,

the proposed CCF combined the advantages of the CBF approach and the fea-

tures of the CF approach. Wang et al. [222] proposed collaborative topic regres-

sion (CTR) for scientific article recommendation, which is a hybrid method that

combines probabilistic MF and LDA. Factorization machine (FM) [175] is designed

to parsimoniously capture interactions between features within high dimensional

sparse datasets. In content recommendation problems, the words of an article can

be treated as the features fed into an FM. Musto et al. [157] proposed learning

word embeddings from Wikipedia and represented a user profile as the centroid of

the embedding vectors of the items that a user previously liked.

To relieve the workload of editors for selecting articles, Wang et al. [229] pro-

posed a Dynamic Attention Deep Model (DADM) to recommend articles, where

each article is represented by a vector using character-level text modeling [110].

These methods focus on article recommendation without considering the personal

attractiveness in an article. Collaborative deep learning Collaborative deep learning

(CDL) [223] is a hierarchical Bayesian model that integrates a stacked denoising au-

toencoder into probabilistic MF, which can be viewed as a deep version of CTR [222]

over item text information (e.g., abstracts of articles and plots of movies).
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2.2 Modeling Implicit Feedback and Long-tail Distribution

Most current RSs are built on explicit feedback, such as ratings, to differen-

tiate users’ preferences. However, explicit feedback is not always available in the

real world; implicit feedback, such as click logs and dwell time, can be obtained

more easily. In this thesis, we involve implicit feedback; therefore, a brief review is

provided on the current works that deal with implicit feedback.

Moreover, in the real world, the data in RSs often follow a long-tail distribution

(i.e., a short head and long tail). That is, the majority of users and items do not have

sufficient data, which leads to many challenges for recommendations, as presented

in Section 1.2. To improve the recommendations for long-tail users and items is

one of the goals to build a non-IID RS. Therefore, we also briefly review studies on

long-tail recommendation.

2.2.1 Implicit Feedback

Apart from rating-oriented systems modeled with regression and classification

methods, recent research has paid more attention to modeling RSs with the learn-

ing to rank approach [23] for modeling implicit feedback. EigenRank [135] addresses

the item ranking problem directly by modeling user preferences derived from ratings.

It ranks items based on the preferences of similar users, wherein the similarity is

measured using the correlation between users’ rankings of items rather than rating

values. ListCF [226] is a memory-based CF method that directly predicts a total

order of items for each user based on similar users’ probability distributions over

permutations of the items. One-class implicit feedback [82, 165] is often indicated

by binary values; that is, 1 for observed choices and 0 for others. These unobserved

choices have zero values, but they do not mean true negative instances. Therefore,

a strategy that is often used is to assign a larger confidence level to the observed

choices to represent the high certainty of users’ explicit likes, whereas a much smaller
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confidence level is assigned to unobserved choices to represent the small certainty

of dislikes [82, 91, 165]. For instance, Bayesian personalized ranking (BPR) [178]as-

sumes that users show a stronger liking for their chosen items than for unobserved

ones. Hence, a preference ordering relationship can be constructed for each pair of

items. As a result, BPR learns the utility of choosing an item from the ordering

relationships. He et al. [72] designed a visual BPR (VBPR) algorithm by incor-

porating visual features (learned through CNN) into MF using a BPR framework.

Zheng et al. [249] extended a neural autoregressive distribution estimator for CF

tasks (CF-NADE) [250] to incorporate implicit feedback to overcome the sparsity

problem of the rating matrix. CDAE [233] is principally used for ranking prediction.

The input of CDAE is users’ partially observed implicit feedback. It can also be

regarded as a preference vector that reflects users’ interest toward items.

2.2.2 Long Tail

The long tail was popularized by Anderson in 2004, who reported that Amazon,

Apple, and Yahoo! apply this strategy to realize significant profits when selling

items in the tail [7]. However, the cold start problem for long-tail items and users

greatly decreases the quality of recommendations. To tackle the cold-start challenge,

additional information must often be incorporated. The additional side information

about the users and the items would be expected to be beneficial if it were incor-

porated into a model. However, side information is not always available because

of privacy and security concerns. As a result, long-tail items can easily suffer from

shilling attacks [85]. Park and Tuzhilin [169] observed this difficulty when recom-

mending long-tail items with very few ratings. Thus, they proposed splitting the

whole item set into head and tail parts, and then grouping the tail items into clus-

ters. As a result, the clusters of the tail items are treated as virtual items, which

have relatively more ratings than just a single item. Levy and Bosteels [125] studied
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music recommendations in the long tail using a conventional, item-based CF ap-

proach. However, these methods cannot work well when the data are too sparse to

find similar items. Lu et al. [140] proposed the content-based CF (CCF) approach

for news topic recommendation on Bing. By utilizing rich contexts and focusing

on long-tail users, the proposed CCF combined both the advantages of the CBF

approach and the features of the CF approach.

Some other research has targeted long-tail recommendations from the perspective

of improving certain other metrics beyond accuracy [54, 149], such as diversity and

serendipity [75]. Yin et al. [243] proposed a graph-based algorithm for long-tail rec-

ommendation. To improve recommendation diversity and accuracy, they extended

the hitting time algorithm and proposed an efficient absorbing time algorithm to

help users find their favorite long-tail items. Vargas and Castells [217] presented a

formal framework for the definition of novelty and diversity metrics that unified and

generalized several state-of-the-art metrics. They identified three essential ground

concepts at the roots of novelty and diversity: choice, discovery, and relevance, upon

which the framework was built. To improve the diversity, Bai et al. [9] presented a

deep learning framework for the recommendation of long-tail Web services.

2.3 SNRSs

Social network sites [22], such as Facebook and Twitter, are proliferating and

attract millions of users who author content, post messages, share photos with their

friends, and engage in many other types of activity. This rapid growth intensifies the

phenomenon of social overload, where users of social media are exposed to a huge

amount of information and participate in vast amounts of interactions [67]. The

“marriage” between social media and RS has many potential benefits for both sides.

For example, social media introduces many new types of data and metadata, such

as tags and explicit online relationships, which can be used in a unique manner by
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Table 2.1 : Challenges to target in SNRSs

Sparsity and Imbalance Referring to users with social connections

Cold Start Referring to users with social connections

Heterogeneity Preferences of related users

Scalability Huge social relationships

Social Behavior Social influence on user decisions

Malicious Attack Modeling trust relationships

Privacy Breach Exposure of social relationships

Cross-domain Sharing Not focused on

Context Awareness Not focused on

Multi-information Integration Social influence

Multi-criteria Consideration Not focused on

RS to enhance their effectiveness. Moreover, RSs are crucial for social network sites

to enhance adoption and engagement by their users, and thus, they play a crucial

role in the overall success of social media [67]. However, SNRSs should not infringe

upon user privacy [48] when benefiting from large portions of social media data.

2.3.1 Summary of the Challenges to Target in an SNRS

SNRSs aim to incorporate social relationships for additional information to im-

prove the recommendation performance. In Section 1.2, we list the main challenges

in current RSs. Table 2.1 reports the challenges that are targeted for modeling

SNRSs.
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2.3.2 Social Media Data

Social media, such as blogs, microblogs, news, and videos, are used often in daily

life. Many RSs have incorporated social interactions over these social media for rec-

ommendation. Lerman [124] described the personalized RS implemented for the web

site Digg as being based on friends and “diggers like me”. Recommendations for

another popular news website, Google Reader, were described by Liu et al. [134].

They combined CF techniques with “individual filtering” techniques. Evaluation,

based on a live trial, indicated that the hybrid approach performed best and im-

proved by 38% over a popularity-based baseline. Davidson et al. [42] stated that

users should understand why a video was recommended to them; thus, explanations

should be incorporated in the YouTube RS. As described in their paper, YouTube

recommendations are based on users’ personal activity on the site and are expanded

by a variant of CF over the co-visitation graph.

2.3.3 Trust Relation Modeling

Spam data can be found everywhere on the Internet (e.g., E-commerce and so-

cial networking sites). Hence, trust and reputation systems (TRSs) [103, 104] have

been designed specifically to foster trusted behavior in these domains. In recent

years, with increasing attention placed on RSs, researchers in the TRS area have

proposed incorporating trust into RSs [102], where a trust score between two users

serves as the weight to conduct the conventional neighbor-based method. How-

ever, the neighbor-based method has its limitations when the data is highly sparse.

People in the area of RSs are also aware of the importance of trust. Some social

network-based recommendation algorithms employ random walks to compute rec-

ommendation ratings [93, 212]. Jamali and Ester [93] proposed the TrustWalker,

which performs a random walk in online social networks to query a user’s direct and

indirect friends’ ratings for the target item as well as similar items. SoRec [142]
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incorporates trust networks into RSs, where joint factorization is conducted over

two matrices: user-item ratings and user-user trust relationships. In recent years,

researchers have utilized trust relations to perform regularization for users. So-

cialMF [94] and SoReg [141] are two representative models that regularize the user

factor vector of a target user via the user factor vectors of their trusters. Such reg-

ularization plays the role of borrowing the preferences of the trusters to deal with

the cold-start problem. Yang et al. [241] proposed circle-based recommendations

in online social networks. It is obvious that a user’s social life, whether online or

offline, is intrinsically multifaceted. Intuitively, a user trusts different subsets of

friends in different domains. Yang et al. [240] proposed Trust-CF-ULF to incor-

porate social network information into top-k RSs. The Trust-CF-ULF approach is

a combination of a user latent feature space-based CF approach (CF-ULF) and a

social network-based approach.

2.3.4 Deep Learning Models

Wang et al. [228] extended neural CF (NCF) [74] to cross-domain social rec-

ommendations (i.e., recommending items of information domains to potential users

of social networks), and presented a neural social collaborative ranking RS. Jia

et al. [97] proposed an RBM-based generative model for event recommendation.

By introducing hidden variables into content-based learning, the model can success-

fully capture the latent mapping relationships from the user and event features to

the output of participation. Deng et al. [45] combined the deep learning technique

with MF (DLMF) for trust-aware recommendation. The DLMF approach contains

two phases of learning: in the first phase, it utilizes a deep autoencoder to learn

the initial values of the latent feature vectors of users and items; and in the second

phase, it learns the final latent feature vectors of users and items in terms of MF.
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2.4 GBRSs

Human beings are of a social nature; therefore, various types of group activities

are observed throughout life, such as seeing a movie or planning a trip. Recently, the

RS community has begun to study group behavior to make group recommendations

[95]. In particular, members of a group often possess different opinions on the same

items; therefore, the main challenge in GBRSs is to satisfy most group members

with diverse preferences.

2.4.1 Summary of the Challenges to Target in GBRSs

GBRSs aim to conduct recommendations for a group by considering all group

members’ preferences. According to the main challenges in RSs listed in Section

1.2. Table 2.2 reports the corresponding challenges that are focused on for modeling

GBRSs.

2.4.2 Aggregation Approach

PolyLens [164] is an early GBRS wherein users can create groups and ask for

recommendations. Berkovsky and Freyne [17] studied recipe recommendations for

families where all members eat a meal together. Because each member of a group

may have different opinions on the same items, the main challenge of satisfying most

group members with diverse preferences cannot be achieved through an individual-

based CF method.

To date, the existing mainstream approaches of GBRS try to aggregate group

information from individual user models [95, 145]. In general, these methods can

be classified into two types of model that differ in the timing of data aggregation.

The first type of model is called group preference aggregation (GPA), which first

aggregates all members’ ratings into a group profile, and then any individual-based

CF approach can be used if it regards groups as virtual individual users. By con-
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Table 2.2 : Challenges to target in GBRSs

Sparsity and Imbalance Not focused on

Cold Start Not focused on

Heterogeneity Preferences between group members

Scalability Not focused on

Social Behavior Group-based choice

Malicious Attack Not focused on

Privacy Breach Exposure of group relationships

Cross-domain Sharing Not focused on

Context Awareness Group members as the context

Multi-information Integration Member preferences

Multi-criteria Consideration Multi-objective optimization for all members

trast, the second type of model is called individual preference aggregation (IPA),

which first predicts the individual ratings over candidate items, and then aggregates

the predicted ratings of members within a group through predefined strategies to

represent group ratings. GBRSs measure group satisfaction by means of aggregat-

ing members’ information using some aggregation models, such as GPA and IPA. In

fact, quite a few heuristic strategies have been designed to work with the aggregation

models. In particular, average and least misery are the two most prevalent strate-

gies [145], thus, they are employed in this paper. For example, PolyLens [164] uses

the least misery strategy, which assumes that a group tends to be as happy as its

least happy member. Yuet al. [246] took the average strategy to recommend televi-

sion programs for groups. Moreover, Berkovsky and Freyne [17] compared these two

strategies for recipe recommendations for families. In this paper, we study a case of

movie recommendations for households, which was sponsored by CAMRa2011 [187].
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Some recent work [60,90] have examined this problem using some aggregation mod-

els. Therein, Hu et al. [90] tested the MF method under GPA and IPA models with

various strategies. However, such methods are heavily dependent on the input data,

which often fail to learn the representation of group preferences when the data is

slightly inconsistent with the aggregation assumption.

2.4.3 Deep Learning Approach

To our knowledge, very few GBRSs have been built with deep learning models.

Only two very recent studies were presented for group-based recommendation by

applying the attention mechanism. Vinh et al. [220] developed the attentive group

recommendation (AGR) model to solve the group recommendation problem through

a deep learning approach. The AGR model utilizes the attention mechanism to learn

the influence weight of each user in a group to make group recommendations. Specif-

ically, given a group of users, the model creates a sub-network attention model for

each user to learn their influence (i.e., the impact weight) on the group’s final deci-

sions. Cao et al. [29] addressed the fundamental problem of preference aggregation

in group recommendation by learning the aggregation strategy from data. They con-

tributed a solution called AGREE (short for “Attentive Group REcommEndation”),

based on the recent developments of attention network and NCF. Specifically, they

adopted the attention mechanism to adapt the representation of a group and learn

the interaction between groups and items from data under the NCF framework.

2.5 CDRSs

Because users have different interests, their rich data domains and deficient data

domains also differ, and therefore, it is sensible to leverage users’ feedback data over

multiple domains to enable the inference of user preferences in unfamiliar domains.

Based on this idea, CDRSs have emerged as a critical research topic. In particular,
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Table 2.3 : Challenges to target in CDRSs

Sparsity and Imbalance Transfer knowledge from related domains

Cold Start Transfer knowledge from related domains

Heterogeneity Heterogeneity of items in different domains

Scalability Huge number of users and items in multiple

Social Behavior Not focused on

Malicious Attack Not focused on

Privacy Breach Exposure of user identity in multiple domains

Cross-domain Sharing Sharing user preference across domains

Context Awareness Related domains as context

Multi-information Integration Multi-domain knowledge

Multi-criteria Consideration Multi-domain learning with multiple criteria

Cantador et al. [28] defined domains from four different levels: (1) the item attribute

level: the same type of items with different values of a certain attribute (e.g., movies

with different genres); (2) the item type level: similar types of items (e.g., movies

and videos); (3) the item level: different types of items (movies and books); and (4)

the system level: same type of items on different systems (e.g., movies on IMDb.com

and Netflix.com).

2.5.1 Summary of the Challenges to Target in CDRSs

CDRSs leverage the knowledge between multiple domains to deal with the chal-

lenges in traditional single-domain RSs caused by limited information. According to

the main challenges in RSs listed in Section 1.2. Table 2.3 reports the corresponding

challenges that are focused on for modeling CDRSs.
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2.5.2 Latent Factor Models

With the prevalence of the MF approach in RSs, LFMs have been extended to

conduct recommendation over multiple domains. Codebook Transfer [127] assumes

that cluster-level rating patterns, which are represented by a codebook, can be found

between the rating matrices in two related domains. The rating-matrix generative

model [128] extends this idea with a probabilistic model to solve collective transfer

learning problems. In reality, there are many cold-start users for most domains due

to the power law. Therefore, it is always out of the question to use this model

in unfamiliar domains because no data is available to match common patterns with

auxiliary domains. Coordinate system transfer (CST) [167] is a typical CDMF model

that first learns the user-factor matrix UA from an auxiliary rating matrix, and then

the user-factor matrix UT of the target domain is then updated based on UA, with

the regularization in terms of penalizing the divergence between UA and UT . Dual

transfer learning (DTL) [136] was formulated as an optimization problem of joint

non-negative matrix trifactorizations. It exploits the duality between the marginal

distribution and conditional distribution to achieve effective transfer. Given the ob-

servations of source and target domains, marginal distribution is associated with the

common latent features over all domains, and conditional distribution is associated

with the domain-specific latent features. Because CST and DTL are modeled on the

problem of transferring knowledge from a source domain to a target domain, they

cannot be directly applied to multiple domains (more than two), as studied in this

paper. Because user preference is not exclusive to a single domain, a straightforward

method is to transfer knowledge through the user-factor matrix.

Collective MF (CMF) [202] couples the target domain matrix and all auxiliary

domain matrices in the user dimension, to share the user-factor matrix across all

domains. Moreover, CMF assigns a weight to the loss of fitting each domain matrix;

thus, it can control the amount of influence from each domain; however, it does not
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provide a mechanism for finding an optimal weight assignment. Loni et al. [137]

presented an approach that encodes rating matrices from multiple domains as real-

valued feature vectors x[u, i; s2(u), · · · , sD(u)], where u, i index of a rating given

by user u on item i of the target domain and sd(u) indexes all rescaled ratings

on auxiliary domain d. With these vectors, an algorithm based on FMs [175] was

employed to detect patterns between target and auxiliary domains. However, for a

cold-start user without any rating on a target domain, no data is available to encode

such a feature vector x for this user to match patterns. Therefore, this method is

unsuitable for application in a cold-start environment such as that studied in this

paper. Moreover, this model is built on rating data, whereas how to deal with

implicit preference data is not defined.

However, we cannot employ a regular tensor factorization model to deal with

the CDCF problems analyzed in the Introduction section. Inspired by PARAFAC2

[114, 158], Hu et al. [83] proposed a cross-domain triadic factorization (CDTF)

model, which transforms the optimization problem on domain slices into an equiv-

alent tensor factorization problem. When dealing with missing values, both CDTF

and PARAFAC2 use an imputation strategy [204] to restore missing values by pre-

dicting ones for each iteration, and therefore, they need a full matrix to store the

reconstructed data on each domain. As a result, the space complexity of CDTF and

PARAFAC2 tends to be even larger when more domains are involved.

2.5.3 Deep Learning Models

Deep learning is well suited to transfer learning because it learns high-level

abstractions that disentangle the variation of different domains. Domain adap-

tation [13] considers the setting in which the data sampled from the target and

the source domain have different distributions. In particular, deep learning based

domain adaptation has been successfully applied in many tasks, e.g. sentimental
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analysis [34, 57] in NLP and cross-modality classification in computer vision [216].

Lian et al. presented the cross-domain content-boosted CF neural network (CC-

CFNet) [132], which embeds a cross-domain model into a unified multi-view neural

network to perform cross-domain recommendations. The basic composite of CC-

CFNet is a dual network (for users and items, respectively), which models the user-

item interactions in the last layer with dot product. To embed content information,

the authors further decomposed each network of the dual net into two components:

CF factor and content information. Multi-view deep neural network (MV-DNN) [49]

is designed for cross-domain recommendation. It treats users as the pivot view and

each domain as the auxiliary view, where a similarity score is computed for each

user domain. MV-DNN is similar to CCCFNet, but CCCFNet does not involve

any similarity and posterior probability estimation. He et al. [228] extended the

Neural Collaborative Filtering (NCF) [74] to cross-domain social recommendations,

such as recommending items of information domains to potential users of social

networks. Wang et al. [228] proposed cross-domain social recommendation and de-

veloped a generic neural social collaborative ranking (NSCR) model based on NCF,

which seamlessly integrates user-item interactions of the information domain and

user-user social relations of the social domain.

2.6 SBRSs

Time-aware RSs (TARSs) [25] and SBRSs are context-aware RSs (CARSs), but

they target different goals. TARSs consider temporal factors when making recom-

mendations; for example, how time information (e.g., weekday vs. weekend) affects

the recommendation [11]. By contrast, SBRSs do not require precise timestamps,

because they focus on learning the relevance between items in a session scope.
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Table 2.4 : Challenges to target in SBRS

Sparsity and Imbalance Learning item dependency from all users’ sessions

Cold Start Learning item dependency from all users’ sessions

Heterogeneity Not focused on

Scalability Huge number of sessions

Social Behavior Not focused on

Malicious Attack Not focused on

Privacy Breach Not focused on

Cross-domain Sharing Sharing user preference across user sessions

Context Awareness Intra- and inter-session context

Multi-information Integration Cross-user session knowledge

Multi-criteria Consideration Intra-session objective and inter-session objective

2.6.1 Summary of the Challenges to Target in SBRSs

SBRSs model the dependency and transition over items in a session context.

According to the main challenges in RSs listed in Section 1.2. Table 2.4 reports the

corresponding challenges that are focused on for modeling SBRSs.

2.6.2 Markov Models

Session-based CF [168] firstly finds the k -nearest neighbors (knn) for the cur-

rent session and then calculates the score for each potential item to generate the

rank. The number of historical sessions is huge; therefore, finding the k -nearest

sessions online is unfeasible for real RSs. Factorized personalized Markov chains

(FPMCs) [179] combine the power of MF and MC to model personalized sequential

behavior. Identical to MF, FPMCs easily suffer from the data sparsity problem.
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Markov decision processes (MDPs) [197] are an early approach to provide recom-

mendations in a session-based manner. Purchase sequence prediction based on the

hidden Markov model (HMM) and purchase intervals was introduced in [65]. Be-

cause the number of items is large, a problem encountered when applying MDP

and HMM is that the state space quickly becomes unmanageable when evaluat-

ing all possible sequences over all items. The model in [35] playlists as an MC,

and proposes representing songs using logistic Markov embedding (LME). Person-

alized metric embedding (PME) [232] and personalized ranking metric embedding

(PRME) [50] extend LME by adding personalization. LME, PME, and PRME are

first-order MC models built on rigid sequential data to model the transition between

consequent choices.

2.6.3 Deep Learning Models

In recent years, SBRSs have begun to embrace deep learning technology. Recur-

rent Neural Networks (RNN) have been devised to model variable-length sequence

data, wherein the internal state of the network allows it to exhibit dynamic temporal

behavior. Hidasi et al. [76] applied RNN consisting of gated recurrent units as the

key component to construct an SBRS, namely GRU4Rec. Twardowski et al. [215]

used a similar RNN for Ad click prediction. Quadrana et al. [173] added an ex-

tra component to an RNN-based SBRS to capture users’ profiles and information

between sessions. The idea was to use a hierarchical architecture that models cross-

sessions by adding another RNN over user sessions, which is capable of capturing

the evolution of the user across sessions and providing personalization capabilities.

Loyola et al. [139] proposed an encoder-decoder architecture for the problem of pre-

dicting the next item within a session and whether he has the intention to purchase

an item or not. Inspired by recent encoder-decoder approaches in MT, the proposed

model has a bidirectional RNN as the encoder and a normal RNN as the decoder;
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the authors added alignment (passing labels as well as predictions to the next time

state) and attention (encapsulating expressive portions of the source sequence in a

separate block) mechanisms as well.

Although language modeling in natural language processing (NLP) is not lit-

erally related to SBRSs, we find that they share common underlying problem;

that is, learning the probability distribution over sequences of words is similar to

learning it over sequences of items. Word embedding models [155, 156], especially

word2vec [152, 153], have achieved great success in NLP. Moreover, because of the

large vocabulary size, word embedding models do not evolve to a deep structure;

by contrast, they become shallow and wide [61] to more efficiently adapt large-class

data. Hu et al. [88] designed an efficient SBRS with a Shallow Wide-In-Wide-Out

network (SWIWO). In view of the large number of items in RSs, SWIWO incor-

porates the subsampling mechanism to improve the efficiency of model learning.

Specifically, SWIWO does not assume a relaxed order of items in a session. In

SWIWO, the authors applied a heuristic rule to assign larger weights to the items

that are closer to the target item. Wang et al. [225] designed an effective attention-

based transaction embedding model (ATEM) for context embedding to weight each

observed item in a transaction without assuming order. In particular, ATEM ex-

tends the SWIWO model by building an attention model over the session context

to remove the weight assignment heuristics.

2.7 MORSs

To date, most research on RSs has focused on improving their accuracy. However,

simply improving the accuracy by one or two percent will hardly result in an im-

proved user experience or greater business benefit. Recommendation accuracy may

not always completely align with recommendation usefulness; therefore, researchers

have proposed several alternative measures, including coverage, diversity, novelty,
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and serendipity [217], to evaluate the performance of RSs. As a result, modern RS

implementations may use multiple performance criteria when deciding on the final

set of recommendations. In most RSs, a single objective is often set for optimization

(e.g., an overall evaluation or rating of an item by a user). In some recent studies,

this assumption has been considered as limited [4], because the suitability of the

recommended item for a particular user may depend on more than one aspect when

making the choice [5]. Particularly in systems where recommendations are based on

the opinions of others, the incorporation of multiple criteria that can affect users’

opinions may lead to more accurate recommendations.

2.7.1 Summary of the Challenges to Target in MORSs

MORSs jointly model multiple objectives to generate more considerable recom-

mendation results with multi-perspective considerations. In Section 1.2, we list

the main challenges in the current RSs. Table 2.5 reports the challenges that are

targeted when modeling an MORS.

2.7.2 Multi-criteria Ratings

The importance of studying MORSs has been highlighted as a separate strand

in RS literature [4, 144], and recently, several RSs have adopted multiple crite-

ria ratings instead of traditional single-criterion ratings. Neighborhood-based CF

techniques can consider multi-criteria ratings using the large number of design op-

tions [144]. Similarly, some model-based methods stem from their single-criterion

counterparts. The aggregation function approach assumes that the overall rating r0

serves as an aggregate of multi-criteria ratings [4]. Given this assumption, this ap-

proach finds aggregation function r0 = f(r1, · · · , rk) that represents the relationship

between overall and multi-criteria ratings. Li et al. [130] utilized the multilinear

singular value decomposition (MSVD) technique, which is a particular realization

of the MF approach in multi-criteria rating settings. Zhang et al. [248] extended
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Table 2.5 : Challenges to target in MORS

Sparsity and Imbalance As an objective to model

Cold Start As an objective to model

Heterogeneity Heterogeneity between objectives

Scalability Time complexity of multi-objective optimization

Social Behavior Not focused on

Malicious Attack As an objective to model

Privacy Breach Not focused on

Cross-domain Sharing Not focused on

Context Awareness Multiple objectives as the context

Multi-information Integration Multi-objective Integration

Multi-criteria Consideration The major targeting problem

the probabilistic latent semantic analysis (PLSA) approach into multi-criteria rating

settings. However, among alternative approaches, there have been several sophisti-

cated hybrid recommendation approaches developed in recent years, and some could

potentially be adopted for multi-criteria rating RSs.

2.7.3 Multi-objective Ranking

Multi-objective optimization problems (MOPs) have been extensively studied in

the literature [44], although not in the context of RSs. One study [119] focused

on RSs that work with implicit feedback in dynamic scenarios providing online

recommendations, such as news articles and ad recommendation in Web portals. In

these dynamic scenarios, user feedback to the system is given through clicks, and

feedback must be quickly exploited to improve subsequent recommendations. In this

scenario, the authors propose an algorithm named multi-objective ranked bandits
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to recommend lists of items for weighing accuracy, diversity and novelty [119].

Data envelopment analysis (DEA), often also called “frontier analysis”, is com-

monly used to measure the productive efficiency of decision-making units (DMUs) in

operations research. DEA computes the efficiency frontier, which identifies the items

that are the “best performers” overall when all criteria are considered. While DEA

has not been directly used in multi-criteria rating RSs, the multi-criteria recom-

mendation problem without overall ratings can also be formulated as a data query

problem in the database field using similar motivation [122]. Lee and Teng [122]

utilized skyline queries to find the best restaurants across multiple criteria with

respect to food, service, and cost. Lin et al. [234] presented several semantics of

the individual utility and proposed two concepts of social welfare and fairness for

modeling the overall utilities and balance between group members. Given the multi-

objective nature of the fairness-aware group recommendation problem, the authors

provided an optimization framework for fairness-aware group recommendation from

the perspective of Pareto efficiency.

Evolutionary algorithms have great advantages over other heuristic approaches in

dealing with MOPs. They can simultaneously deal with a series of possible solutions,

which allows finding several members of the Pareto optimal set in a single run of the

algorithm, and can easily deal with discontinuous and concave Pareto fronts. Multi-

objective evolutionary algorithms (MOEA) are introduced to deal with problems

with two or more contradictory objectives and return a set of Pareto optimal solu-

tions [224]. Zuo et al. designed a multi-objective evolutionary algorithm to evolve

the population to maximize the two objectives of accuracy and diversity. The accu-

racy was predicted by the ProbS [252] method, whereas the diversity was measured

by recommendation coverage. NSGA-II [44] was adopted to solve the modeled MOP

for personalized recommendation. Ribeiro et al. [182] showed that existing recom-

mendation algorithms do not perform uniformly well when evaluated in terms of
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accuracy, novelty, and diversity, and thus, they proposed approaches that exploited

the Pareto efficiency concept to combine such recommendation algorithms in a man-

ner in which a particular objective is maximized without significantly hurting the

other objectives. As a result, the authors designed a Pareto-efficient hybridization

recommendation approach, where MOEA was used to optimize a vector of weights

assigned to different recommendation methods.
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Chapter 3

Preliminaries

Since the methodology of this thesis to construct Non-IID RSs is based on the ma-

chine learning approach, we first present some preliminaries of the machine learning

models which are related to the modeling in the following chapters. In this chapter,

we will introduce latent factor models, deep learning models and evaluation metrics

for recommendation results.

3.1 Neighborhood Method

k-nearest neighbor (kNN) is a representative, memory-based collaborative filter-

ing approach. The simple form of user-based kNN can be given by:

Ŷi,j =

∑
n∈Γi

wi,nYn,j∑
n∈Γi

wi,n
(3.1)

where Ŷi,j is the predictive rating of user i on item j; Yn,j is the observation on j

from a neighbor of i; Γi denotes the neighbor set of user i; and wi,n is the weight

between user i and user n. Typically, wi,n can be computed by Pearson correlation,

cosine, or Jaccard similarity [26].

3.2 Latent Factor Models

3.2.1 Matrix Factorization

Probabilistic matrix factorization (PMF) [188] is a typical model to illustrate

the MF approach from the probabilistic view. Given a data matrix Y ∈ RN×M with

the index of each observed choice (i, j) ∈ O on N users and M items, we can obtain
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the following distributions with the d-dimensional latent factors Ui ∈ Rd of users

and Vj ∈ Rd of items:

P (Ui) = N (Ui|0, σ2
UI) P (Vi) = N (Vj|0, σ2

V I) (3.2)

P (Yij|Ui,Vj) = N (Yij|U>i Vj, σ
2) (3.3)

P (U,V|Y) ∝ P (Y,U,V) =
∏
i,j∈O

P (Yij|Ui,Vj)
∏
i

P (Ui)
∏
j

P (Vj) (3.4)

where U = [U1, · · · ,UN ] is the user factor matrix; V = [V1, · · · ,VM ] is the item

factor matrix; and σ2
U , σ

2
V , σ

2 are the variance parameters of the Gaussian distri-

butions. We learn the user factors and the item factors through a maximum a

posteriori (MAP) estimate. According to the Bayesian theorem, we have the pos-

terior P (U,V|Y) ∝ P (Y,U,V) given in Eq. 3.4. The following objective function

can then be obtained by minimizing the negative log-posterior. Without loss of

generality, we easily obtain the classic objective of an MF model [117,188], when we

set σ2 = 1 and denote λ = σ−2
U = σ−2

V as the regularization parameter:

J = argmin
U,V

1

2

[∑
i,j∈O

(Yij −U>i Vj)
2 + λ(‖Ui‖2

2 + ‖Vj‖2
2)

]
(3.5)

We can easily write the partial derivative ∂J/∂Vj w.r.t. each Vj. The optimization

w.r.t. Vj is convex when U is fixed. A close-form update equation for Vj can be

obtained by setting ∂J/∂Vj to zero [188]:

Vj ←−

λI +
∑
i∈Oj

UiU
>
i

−1 ∑
i∈Oj

YijUi (3.6)

where Oj indexes those users who have chosen item j. Similarly, the optimization

w.r.t. Ui is convex when V is fixed, and thus, we can obtain:

Uj ←−

(
λI +

∑
j∈Oi

VjV
>
j

)−1 ∑
j∈Oi

YijVj (3.7)

where Oi indexes the items chosen by user i.
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3.2.2 Tensor Factorization

Tensor factorization (TF) models generalize MF in terms of higher order low-

rank approximation.

Notations and Operations

The order of a tensor is the number of dimensions, also known as ways or modes.

In this thesis, tensors are denoted by calligraphic capital letters, e.g. X . Matrices

are denoted by boldface capital letters, e.g. X. Vectors are denoted by boldface

lowercase letters, e.g. x. In addition, we denote the ith row of a matrix X as

Xi,:, the jth column as X:,j and Xi,j for the entry (i, j). X(n) denotes the nth

mode matricizing operation which maps a tensor into a matrix, e.g., X(2) represents

the mapping X I×J×K −→ XJ×IK
(2) [114]. ⊗ denotes the Kronecker product and �

denotes the Khatri-Rao product [114], e.g. we have X � Y = [X:,1 ⊗ Y:,1,X:,2 ⊗

Y:,2, · · · ,X:,R⊗Y:,R]. ·∗ denotes the Hadamard (element-wise) product. 〈X .∗Y〉 =∑
i,j,k Xi,j,kYi,j,k stands for the inner product and the norm of a tensor is defined as

‖X‖ =
√
X . ∗ X .

Regularized CP Model

There are a number of different TF models in the literature, such as the CP

model (canonical decomposition / parallel factor analysis (PARAFAC)) and the

Tucker model [114] . Here, we mainly present the CP model, which is the most

widely used TF model, because it has a concise factorization form.

As shown in Figure 3.1, the CP model decomposes a tensor into a sum of rank-one

components. For instance, given a third-order tensor X ∈ RI×J×K , the factorization

form of X can be written as X = JA,B,CK =
∑R

r=1 A:,r ◦ B:,r ◦ C:,r, where A, B

and C are R-dimensional latent factor matrices and ◦ denotes the outer product,

i.e. the entries are computed Xi,j,k =
∑R

r=1 Ai,r ◦ Bj,r ◦ Ck,r. We can formulate
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b1 b2 bR

X
= + + +...

a1

c1 c2

a2 aR

cR

Figure 3.1 : The demonstration of CP factorization on a third-order tensor

the problem of fitting X as a least squares optimization problem with the following

objective function [1]:

J = argmin
A,B,C

1

2
[‖X − JA,B,CK‖2 + λA‖A‖2

F + λB‖B‖2
F + λC‖C‖2

F ] (3.8)

where regularization terms are added to avoid overfitting, ‖·‖F is the Frobenius

norm and λA, λB, λC are regularization parameters. From Eq. 3.8, the following

gradient w.r.t. λA, λB, λC can be derived:

∂J

∂A
= −X(1)(C�B) + A(B>B ·∗ C>C + λAI) (3.9)

∂J

∂B
= −X(2)(C�A) + B(C>C ·∗ A>A + λBI) (3.10)

∂J

∂C
= −X(3)(A�B) + C(A>A ·∗ B>B + λCI) (3.11)

Similar to learning MF using alternating least square [117], CP model alternatively

learn the parameters {A,B,C}, i.e. update one of the parameters by fixing others

[83]. Setting the above equation equal to zero and the property of pseudo-inverse of

Khatri-Rao product [114] yields:

A = X(1)(C⊗B)(B>B. ∗C>C + λAI)† (3.12)

B = X(2)(C⊗A)(A>A. ∗C>C + λBI)† (3.13)

C = X(3)(A⊗B)(A>A. ∗B>B + λCI)† (3.14)
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3.3 Deep Learning Models

3.3.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) [78] is a Markov random field over a

vector of binary visible units v ∈ {0, 1}D and hidden units h ∈ {0, 1}F , where the

connections only exist between v and h, as illustrated in Figure 3.2. The distribution

of an RBM is defined through an energy function E(v,h;θ):

P (v,h;θ) =
exp(−E(v,h;θ))

Z(θ)
(3.15)

θ = {W,b,d} are the model parameters, where W ∈ RD×F encodes the visible-

hidden interaction, b ∈ RD and d ∈ RF encodes the biases of v and h . The

pattern of such interaction can be formally specified through the energy function:

E(v,h;θ) = −vTWh− bTv − dTh (3.16)

The conditional distributions w.r.t. visible units and hidden units are factorial [14],

which can be easily derived from Eq. 3.3.1:

P (vi = 1|h;θ) = s(bi +
D∑
j=1

Wijhj) (3.17)

P (hj = 1|v;θ) = s(dj +
K∑
i=1

viWij) (3.18)

where s()̇ is a sigmoid function. In particular, the RBM has been generalized to

Gaussian RBM (GRBM) to work with real-value data. The energy of the GRBM is

defined by:

E(v,h;θ) =
D∑
i=1

(vi − bi)2

2σ2
i

−
F∑
i=1

djhj −
D∑
i=1

F∑
j=1

viWijhj
σi

(3.19)

where the Gaussian visible units v ∈ RD, the hidden units h ∈ {0, 1}F and θ =

{W,b,d,σ} are the model parameters. Accordingly, the conditional distributions

w.r.t. each visible unit and each binary hidden unit are given by:

P (vi|h;θ) = N (bi + σi

F∑
j=1

Wijhj, σ
2
i ) (3.20)
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Figure 3.2 : The structure of restricted Boltzmann machine

P (hj = 1|v;θ) = s(dj +
D∑
i=1

viWij

σi
) (3.21)

Each model parameters θk ∈ θ can be estimated using gradient descent to minimize

the negative log-likelihood:

−∂ log p(v;θ)

∂θk
= EP (h|v)(

∂E(v,h;θ)

∂θk
)− EP (v,h)(

∂E(v,h;θ)

∂θk
) (3.22)

The first term, a.k.a. data-dependent expectation, is tractable but the second term,

a.k.a. model-dependent expectation, is intractable and must be approximated [14].

In practice, contrastive divergence (CD) [77] is a successful algorithm which ap-

proximates the expectation with a short k-step Gibbs chain (oftenk = 1), denoted

as CDk. Moreover, Tieleman [213] proposed an improved CD algorithm, namely

persistent CD.

3.3.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural network where

connections between nodes form a directed graph along a sequence. This allows

it to exhibit dynamic temporal behavior for a time sequence. RNN can use their

internal state (memory) to process sequences of inputs. In practice, RNN is not

capable of handling “long-term dependencies”. The problem was explored in depth
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Figure 3.3 : Long short-term memory [161]

by [80], who found some pretty fundamental reasons that the accumulation of error

gradients on long sequences results in the gradient vanishing or exploding.

Long Short-Term Memory

Long short-term memory (LSTM) network extends the memory module of stan-

dard RNN. Therefore, it is well suited to learn from important experiences that

have very long time lags in between. There are several architectures of LSTM units.

A common architecture is composed of a memory cell, an input gate, an output

gate and a forget gate. Figure 3.3 depicts the architecture of this LSTM, and the

corresponding update rule is given as follows:

ft = σ(Wf [ht−1,xt])

it = σ(Wi[ht−1,xt])

ot = σ(Wo[ht−1,xt])

c̃t = tanh(Wc[ht−1,xt])

ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh (ct)
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Figure 3.4 : Gated recurrent unit

where σ(x) = 1/(1+exp(−x)) is sigmoid function, xt denotes input gate’s vector, ft ∈

Rh denotes forget gate’s activation vector, it ∈ Rh denotes input gate’s activation

vector, ot ∈ Rh denotes output gate’s activation vector, ct denotes cell state vector

and ht denotes output vector, {Wf ,Wi,Wo,Wc} are the weight matrices.

Gated Recurrent Unit

Gated recurrent units (GRU) [36] are a gating mechanism in recurrent neural

networks (RNN). It combines the forget and input gates into a single “update gate”

and merges the cell state and hidden state. The resulting model is simpler than

standard LSTM models and has been growing increasingly popular. Figure 3.4

depicts the architecture of GRU, and the corresponding update rule is given as

follows:

zt = σ(Wz[ht−1,xt])

rt = σ(Wr[ht−1,xt])

h̃t = tanh(W[rt ∗ ht−1,xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t
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where σ(x) = 1/(1 + exp(−x)) is sigmoid function, zt denotes update gate vector,

rt denotes reset gate vector, xt denotes input vector and ht denotes output vector,

{Wz,Wr,W, } are the weight matrices.

3.4 Evaluation Metrics

We conducted experiments with all the comparison methods on explicit feedback

data, e.g. ratings and implicit data, e.g. clicks. The rating prediction metrics and

the ranking prediction metrics are used to evaluate the performance of the accuracy

of the recommendation. However, people have realized the harmfulness of evaluating

RSs only using accuracy metrics [149,186]. Therefore, in some experiments, we ad-

ditionally evaluate our model and other comparison methods from the perspectives

of diversity to evaluate if a model can generate a diverse recommendation result.

3.4.1 Rating Prediction

To measure the accuracy of rating prediction, we utilized the most widely used

evaluation metrics, namely Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE) [75].

• MAE:

MAE =

∑N
i=1 abs(Yi − Ỹi)

N
(3.23)

• RMSE:

RMSE =

√∑N
i=1 (Yi − Ỹi)2

N
(3.24)

where Yi denotes a true rating in testing set, Ỹi is the predicted rating, and N denotes

the number of ratings in the testing set.
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3.4.2 Ranking Prediction

The most common way to assess the prediction performance on implicit feed-

back data is to measure whether relevant items are placed in the top positions of

a recommendation list. Information retrieval metrics are therefore often employed

to evaluate the ranking performance of a recommender system. Here, we denote

rel(k) = 1 if the item at position k is relevant and rel(k) = 0 otherwise.

• Recall@K: Considers the fraction of relevant items over all N relevant items:

Recall@K =

∑K
k=1 rel(k)

N
(3.25)

• Precision@K: Considers the fraction of relevant items over top K recom-

mended items:

Precision@K =

∑K
k=1 rel(k)

K
(3.26)

• AP@K: Average Precision is the average result over Precision@1∼K, which

is defined as:

AP@K =

∑K
k=1 rel(k) · Precision@k

min(K,N)
(3.27)

• MRR@K: Mean Reciprocal Rank evaluates any process that produces a list

of possible responses to N testing query samples, ordered by probability of

correctness., which is defined as:

MRR@K =
1

N

K∑
k=1

rel(k)
1

k
(3.28)

• nDCG@K: Normalized Discounted Cumulative Gain [23] is a measure of

ranking quality which places strong emphasis on relevant items:

nDCG@K =
DCG@K

IDCG@K
(3.29)

where IDCG means ideal DCG and

DCG@K =
K∑
k=1

2rel(k) − 1

log2(k + 1)
, IDCG@K =

K∑
k=1

1

log2(k + 1)
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• AUC: Area Under the ROC Curve measures the probability that the rank of

relevant items T+ is higher than irrelevant items T−:

AUC =

∑
i∈T+

∑
k∈T− σ(rank(i) < rank(k))

N ×M
(3.30)

where σ(rank(i) < rank(k)) returns 1 if rank(i) < rank(k) and 0 otherwise.

3.4.3 Diversity

Since accuracy and diversity often cannot be optimized simultaneously [251], we

design the following metrics to jointly consider accuracy and diversity:

• DIV@K: This diversity measures the mean non-overlap ratio between each

pair of recommendations 〈Ri,Rj〉 over all N top-K recommendations (note

that the number of all possible pairs is N(N − 1)/2).

DIV@K =
2

N(N − 1)

∑
i 6=j

(1− |Ri

⋂
Rj|

K
) (3.31)

• F1@K: The traditional F1 score is the harmonic mean of recall and preci-

sion. Here, we replace precision with diversity to jointly consider accuracy

and diversity metrics.

F1MRR−DIV @K =
2(MRR@K ×DIV@K)

MRR@K +DIV@K
(3.32)

F1REC−DIV @K =
2(REC@K ×DIV@K)

REC@K +DIV@K
(3.33)

3.5 Baseline Methods for Experiments

In this section, we list the methods that will be used as the baselines to compare

with our non-IID RSs introduced in following chapters.
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3.5.1 Heuristic Methods

• MostPop: This method applies the simple strategy to rank items by their

popularity (measured by the number of observations associated with items).

• kNN : The neighborhood-based method recommends items according to the

feedback from the top-k nearest neighbors (e.g. k=10).

3.5.2 CF Methods

• PMF [188]: The probabilistic matrix factorization model learns the user and

the item factors of from a rating matrix.

• WRMF [91, 165]: The weighted regularized matrix factorization model is de-

signed to deal with implicit feedback.

• BPR-MF [178]: It uses Bayesian Personalized Ranking (BPR) to optimize the

matrix factorization model.

3.5.3 Factorization Machines

• FM [175]: Factorization machines are designed to parsimoniously capture in-

teractions between features within high dimensional sparse datasets.

• NFM [73]: Neural factorization machines implement FM model with neural

network and has multiple hidden layers to learn non-linear interactions.

3.5.4 Content-based Methods

• CENTROID [157]: It creates user profiles using the centroid of all content

feature from the users’ articles.

• CTR [222]: Collaborative topic regression performs regression for users over

the latent topic distribution of each article learned from LDA.
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3.5.5 Relation-based Method

• SoRec [142]: This method jointly models the trust-link matrix and a user-item

rating matrix, which shares user factors to propagate the interaction between

two matrices.

• SoReg [141]: This method utilizes the trust relationships to construct the

regularizer to learn user factors with matrix factorization.

• SocialMF [94]: This method is very similar to SoReg. The main difference lies

in the setting of similarities for trusters.

• CMF [203]: Collective matrix factorization is a CDMF model. In the experi-

ments, we couple the rating matrix of each domain on user dimension.

3.5.6 Session Methods

• FPMC [179]: It combines MF and first-order MC as a session-based model,

which uses personalized MC for sequential prediction.

• GRU4Rec [76]: This is an SBRS consisting of a deep RNN with the GRU cells.

• SWIWO [88]: This model simulates the CBoW to model the user-session

context with a shallow network architecture.

3.5.7 Cross-domain Methods

• PARAFAC2 [70]: It is a TF model to deal with inconsistently sized matrices.

• CDTF [83]: This is an extended PARAFAC2 model which tunes the weight

to control the influence between auxiliary domains and target domain by a

genetic algorithm.
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Part II

Non-IID RS: Modeling

Non-IIDness on Users
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Chapter 4

A Group-based Recommender System for

Modeling Group Preference over Member

Decisions

4.1 Introduction

Various RSs have been applied to capture personalized requirements and offer

tailored services for better user experience and new business opportunities. How-

ever, human beings are of a social nature, so various kinds of group activities are

observed throughout life, e.g. seeing a movie, or planning a travel. Recently, the

RS community has begun to study group behavior to make group recommenda-

tions [95]. For instance, PolyLens [164] is an early GBRS where users can create

groups and ask for recommendations. Moreover, Berkovsky and Freyne [17] studied

recipe recommendations for families where all members eat a meal together.

Each member of a group may have different opinions on the same items, so

the main challenge in GBRS is to satisfy most group members with diverse prefer-

ences. Obviously, this is not achieved through an individual-based recommendation

method. To date, the existing mainstream approaches of GBRS try to aggregate

group information from individual user models [95, 145]. In general, these methods

can be classified into two types of models which differ in the timing of data ag-

gregation. The first type of model is called Group Preference Aggregation (GPA),

which firstly aggregates all members’ ratings into a group profile, and then any

individual-based recommendation approach can be used if it regards groups as vir-

tual individual users. In contrast, the second type of model is called Individual
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Preference Aggregation (IPA) which firstly predicts the individual ratings over can-

didate items, and then aggregates the predicted ratings of members within a group

via predefined strategies to represent group ratings.

However, both these two aggregation models have their deficiencies. Quite often,

only a few members will give ratings to the same items used by a group. Hence,

we can hardly construct a representative group profile because each group rating is

often generated merely from a single member. As a result, the recommendations

may be biased towards some of the members in a group. The IPA model aggregates

group recommendations using the predictive results produced by individual models.

However, the recommendations made by individual models fail to consider individual

behavior when she/he makes choices in the role of a group member.

In fact, quite a few heuristic strategies have been designed to work with the

aggregation models. In particular, Average and Least Misery are the two most

prevalent strategies [145], so they will be evaluated in this chapter. Some recent

work [60, 90] studied this problem using some aggregation models. Therein, Hu

et al. [90] tested the MF method under GPA and IPA models with various strategies.

However, such methods are heavily dependent on the input data, which often fail to

learn the representation of group preference when the data is slightly inconsistent

with the aggregation assumption. In essence, these models lack the capability to

build a good representation of the group preference, which we believe crucial to the

success of GBRS.

The above discussions disclose the need for a GBRS to satisfy each member and

the group as a whole. In this chapter, we attempt to address this challenge by

employing the deep-learning technique that has been proved effective to learn high-

level features [14]. Since the hypothesis behind our approach is that the individual

choices are governed by collective factors when she/he acts as a group member,
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we design a collective Deep Belief Network (DBN [78]) to disentangle collective

embedding w.r.t. a group, according to the choices of each member. Furthermore,

each group choice can be regarded as a joint decision by all members, so we can

take advantage of collective embedding as the priors to model the probability of

making each group choice. Accordingly, we design a dual-wing Restricted Boltzmann

Machine (RBM [78]) at the top level to learn the representation of group preferences

by jointly modeling group choices and collective embedding.

4.2 Problem Formulation

This chapter is aimed to learn an expressive representation of the group prefer-

ences so as to make appropriate recommendations to groups. Especially, we address

the typical case of movie recommendation for households which was sponsored by

CAMRa2011 Challenge [187]. Before introducing our model, we first need to give

some definitions to clarify the following presentation.

• Collective Embedding : it represents compromised preferences of a group,

which are shared among all members and can be disentangled from the Member

Embedding.

• Individual Embedding : it represents independent individual-specific pref-

erence, which can be disentangled from the Member Embedding w.r.t. this

user.

• Member Embedding : it represents the individual preference of a user when

she/he makes choices as a group member, which can be regarded as a mixture

of Collective Embedding and Individual Embedding.

In particular, we study a case of movie recommendations for households, which

was sponsored by CAMRa2011 [187]. To avoid the vulnerability in the group-based
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recommendation, we design a deep model to represent group preference using high-

level features that are learned from lower-level features. Such a deep model can

effectively remove the sensitivity from data [14].

4.3 Model and Inference

Most current GBRSs are built on GPA or IPA models, so they are vulnerable to

the data. To address this issue, we need to learn high-level and abstract features to

replace the shallow features that are directly coupled in data.

To learn high-level features, we build a multi-layer model in terms of a deep learn-

ing technique. Using such a model, we can recover low-level features accounting for

the data, and then pool low-level features to form higher-level invariant features [14].

In particular, we employ DBN and RBM as the building blocks to construct a col-

lective DBN, where the term “collective” signifies that this DBN jointly model all

members in a group as a whole. This collective DBN is capable of disentangling

the collective embedding from low-level member embedding. Such collective embed-

ding is an abstract representation of group preference, which avoids the deficiency

of direct aggregation on the individual ratings. Furthermore, we design a dual-wing

RBM on the top of the DBN to learn the comprehensive embedding w.r.t. each

group, where one wing is connected to the group profile and the other is connected

to the collective embedding learned from the collective DBN. Such a deep-structure

design jointly models group choices and collective embedding, so that it can pro-

duce high-level features to represent the group preference so as to overcome the

vulnerabilities in current shallow models.

4.3.1 Disentangling Collective and Individual Embedding

In individual-based RS, users independently make decisions on choosing which

items, whereas in GBRS, each member needs to consider other members’ preferences
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Figure 4.1 : Left: Overview of the two-layer collective DBN used to disentangle

high-level collective and individual embeddings. Right: More detailed structure of

the collective RBM at the top layer where the collective embedding is connected to

the member embedding w.r.t. each member.

when she/he makes choices. That is, each choice is a mixed individual and collective

decision. Therefore, we need to disentangle the individual and collective factors

leading to the decisions.

To achieve this goal, we first learn the low-level member embedding from the

member profile, i.e. the ratings given by the member, through the bottom-layer

model depicted on the left of Figure 4.1. Then, we disentangle the high-level col-

lective and individual embedding from the member embedding using the top-layer

model. In particular, the top-layer model is a collective RBM as illustrated on the

right of Figure 1, where the plate notation is used to represent the repeated individ-

ual and member embedding of a group, and the collective embedding is coupled with

all member embeddings. To date, the most effective approach to learn the parame-

ters of a DBN is through greedy layer-wise training using a stack of RBMs [15,79]. In

our model, the bottom-layer model is a GRBM w.r.t. each user. Such a user-based

RBM model has been studied in the literature for individual-based CF [55,189]. We

simply use the same method to learn the member embedding, denoted mu ∈ RD,

w.r.t. each member u, where the conditional distributions used for CD have been
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given by Eq. 3.20 and 3.21.

When the member embedding is learned, we take them as the visible units to

learn higher-level features. In particular, it is possible to disentangle the collective

and individual embedding from the member embedding since they represent a com-

promised preference among all members. As shown in Figure 4.1, we construct a

collective RBM for each group, where the collective embedding, denoted c ∈ RK ,

are connected to the member embedding w.r.t. each member. Then, we can write

the following energy function to describe the interaction pattern of this collective

RBM.

E(m,n, c;θ) = −fTc−
U∑
u=1

(−mT
uWnu −mT

uXc− bTmu − dTnu) (4.1)

where U denotes the number of members in the group and θ = {W,X,b,d, f} are

the model parameters. W ∈ RD×F encodes the interaction between member em-

bedding and individual embedding and X ∈ RD×K encodes the interaction between

member embedding and collective embedding.

Similar to the conditional distributions for a standard RBM, we can easily derive

the conditional distribution w.r.t. each member embedding mu,i, each individual

embedding nu,j and each collective embedding ck.

P (mu,i = 1|c, {nu};θ) = s(bi +
F∑
j=1

Wijnj +
K∑
k=1

Xikck) (4.2)

P (nu,j = 1|m;θ) = s(dj +
D∑
i=1

mu,iWij) (4.3)

P (ck = 1|m;θ) = s(fk +
U∑
u=1

D∑
i=1

mu,iXij) (4.4)

With these conditional distributions in hand, we can learn each parameter θi ∈ θ

using CD. For example, the stochastic gradient descent update using CDk is given

by:

θi ←− θi − α(
∂E(m0,n0, c0;θ)

∂θi
− ∂E(mk,nk, ck;θ)

∂θi
) (4.5)
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where m0 are the visible data, n0 and c0 are respectively sampled from Eq. 4.3.1

and 4.3.1. mk,nk, ck are the k-step sample from a Gibbs chain with the initial values

m0,n0, c0. When the model parameters are learned, we set the value of collective

embedding ck using its expectation, i.e. ĉk = s(fk +
∑M

m=1

∑D
i=1mm,iXij), instead

of a stochastic binary value to avoid unnecessary sampling noise (Hinton 2012).

4.3.2 A Comprehensive Representation of Group Preferences

GPA models create group profiles by aggregating individual ratings but, as dis-

cussed in the introduction, the recommendations may be biased towards a minority

of members’ taste based on such group profiles. To avoid such deficiency, the group

profiles used in our approach simply consist of the group choices over items. For-

mally, we denote the group choices using binary ratings: rgi = 1 indicates item i

which was chosen by group g and rgi = 0 otherwise. Given such group profiles,

we can run an individual-based CF method for making recommendations by taking

each group as a virtual user. However, only using such group profiles may lead to

learning less expressive features because we cannot distinguish the degree of like on

the same items between groups due to the identical ratings.

Each group choice is a joint decision made by all members whereas collective

embedding exactly represents compromised preference of a group according to mem-

bers’ choices. Hence we can take advantage of the collective embedding to model

the degree of like on an item, more formally, the probability of making that choice.

As a result, we design a dual-wing RBM (DW-RBM) on the top of our model as

illustrated in Figure 4.2, where one wing of the DW-RBM is connected to the group

profile, and the other wing is connected to the collective embedding layer of the

collective DBN. Under such a construction, it learns a set of comprehensive embed-

ding that jointly models the group choices and the collective embedding. In fact,

our approach can be viewed as a transfer learning model in which the collective em-
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Figure 4.2 : A dual-wing RBM is placed on the top of DBN, which jointly models

the group choices and collective embedding to learn the comprehensive embedding

of group preference.

bedding learned from the low-level collective DBN are transferred to the high-level

DW-RBM model so as to learn a more comprehensive representation of the group

preferences.

For any item with a one-rating, i.e. rgi = 1, we can say that group g is explicitly

interested in item i. However, it is not certain that group g is not interested in

item i or is unaware of it if rgi = 0. Therefore, we cannot simply treat unchosen

items as true-negative instances. Thus, it is a so-called “one-class” or “implicit

feedback” CF problem [91, 165] as presented in Section 1.1.2. These methods use

a weighted matrix factorization approach where it assigns a relatively large weight
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to apply a higher penalty on the loss on fitting one-ratings and a much smaller

weight to apply a lower penalty on the loss on fitting zero-ratings [91,165]. Equally,

it can be interpreted from a probabilistic view [222]: the one-rating is generated

from an informative distribution with a high confidence level whereas the zero-

rating is generated from a less informative distribution with a low confidence level.

Following the same idea [222], we define a concentrated distribution governed by a

small variance parameter for one-ratings whereas a diffuse distribution governed by

a large variance parameter for zero-ratings.
σ2
gi = αf(g, i), if rgi = 1

σ2
gi = β, if rgi = 0

(4.6)

where β > αf(i) > 0, α, β are constants and the function f(g, i) can simply be a

constant 1, or a more sophisticated form to retrieve the group satisfaction measured

by some aggregation strategy. For example, if we take the Least Misery strategy,

we can define f(g, i) = 1/lm(g, i) , where lm(g, i) returns the least member rating

on item i. That is, larger group satisfaction means smaller variance.

Following the setting of one-class CF [222], we model the group profile using

Gaussian visible units with different variance parameters. Under such a construc-

tion, the energy function for the DW-RBM can be defined as follows (note that we

omit the subscript g for concise, since each DW-RBM models a single group):

E(r, c,h;θ) =
D∑
i=1

(ri − bi)2

2σ2
i

−
K∑
k=1

fkck−
Y∑
j=1

djhj−
M∑
i=1

Y∑
j=1

riWijhj
σi

−
K∑
k=1

Y∑
j=1

ckXkjhj

(4.7)

where r ∈ {0, 1}M are the group ratings, h ∈ {0, 1}Y are the comprehensive em-

bedding and θ = {W,X,d, f} are the model parameters. W ∈ RM×Y encodes

the interaction between r and h and X ∈ RD×F encodes the interaction between

c and h. According to this energy function, we can respectively obtain the con-

ditional distribution w.r.t. each rating ri, each collective embedding ck, and each
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comprehensive embedding hj:

P (ri|h;θ) = N (bi + σi

F∑
j=1

Wijhj, σ
2
i ) (4.8)

P (ck = 1|y;θ) = s(fk +
Y∑
j=1

Xkjhj) (4.9)

P (hj = 1|v, c;θ) = s(dj +
M∑
i=1

riWij

σi
+

K∑
k=1

ckXkj) (4.10)

Then, the model parameters θ can be estimated by CD as demonstrated in the

previous subsection.

4.3.3 Recommendation for a Group

The one-class CF approach [91,165] ranks the items for recommendation accord-

ing to the reconstructed ratings. Given a zero-rating item, the reconstructed rating

tends to be relatively large if this item meets a user’s preference, otherwise, it tends

to be small.

In the same way, we can reconstruct a group profile using the DW-RBM. In par-

ticular, we perform a one-step mean-field reconstruction [230] instead of a stochastic

reconstruction to avoid sampling noise.

ĥj = s(dj +
M∑
i=1

riWij

σi
+

K∑
k=1

ckXkj) (4.11)

r̂i = E[N (bi + σi

F∑
j=1

Wijĥj, σ
2
i )] = bi + σi

F∑
j=1

Wijĥj (4.12)

Then, we can rank the recommendation items C for a group by sorting their recon-

structed ratings {r̂i}i∈C.

4.4 Experiments

Many studies on GBRSs were evaluated using synthetic group preferences cre-

ated from individual profiles due to the lack of available data on group preferences.



84

Table 4.1 : Statistics of the evaluation data

Data # Users/# Groups # Ratings Density

Trainuser 602 145,069 0.0313

Traingroup 290 114,783 0.051

Evalgroup 286 2,139 /

However, such synthetic datasets cannot truly reflect the characteristics of group

behaviors because all the individual choices are made independently. To overcome

this deficiency, CAMRa2011 [187] released a real-world dataset containing the movie

watching records of households and the ratings on each watched movie given by some

group members. Following track 1 of CAMRa2011, we evaluated our approach and

other comparison methods to compare the performance of movie recommendation

for households.

4.4.1 Data Preparation

The dataset for track 1 of CAMRa2011 has 290 households with a total of 602

users who gave ratings (on a scale 1-100) over 7,740 movies. This dataset has been

partitioned into a training set and an evaluation set. The training set contains

145,069 ratings given by those 602 members and 114,783 movie choice records from

the view of 290 groups. That is, only 1.26 members give the rating to a watched

movie. The evaluation set contains 286 groups with 2,139 group-based choices. Some

statistical information is provided in Table 4.1.

4.4.2 Comparison Methods

To compare our approach with state-of-the-art methods, we evaluate the follow-

ing methods, which are extended from the methods introduced in Section 3.5 with
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the following settings:

• kNN : This is a baseline method to recommend movies watched by the top-k

most similar groups.

• MF-GPA: This method performs PMF on the group ratings that are aggre-

gated from individual ratings through a specified strategy.

• MF-IPA: This method performs PMF on individual ratings, and then aggre-

gates the predicted ratings as the group ratings, using a specified strategy.

• WRMF : This method performs WRMF on the binary group ratings where the

weights are set according to a specified strategy.

• OCRBM : This simply uses an RBM over the group choices without a connec-

tion to collective embedding. The variance parameters are set the same as the

DW-RBM.

• DLGR: This is our deep learning approach, where the variance parameters

of the DW-RBM (cf. the previous section) are set according to a specified

strategy.

The evaluation metrics mean Average Precision (MAP) (cf. Eq. 3.27) and AUC (cf.

Eq. 3.30) to evaluate above models over all testing groups.

4.4.3 Results

To perform a comprehensive comparison, we evaluated all comparison methods

using the two most prevalent, Average and Least Misery, aggregation strategies (if

applicable), in addition to the evaluation without using any strategy. Specially, we

set β = 1 and α = 0.5 (cf. Eq. 4.3.2) for OCRBM and DLGR when no strategy is

used, and we set α = 1 and f(g, i) = 1/(1 + log s(g, i)) when a strategy s(·) is used.

Also, we used similar settings for the weights of WRMF.
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Table 4.2 : MAP of all comparison models with different strategies

MAP

Model/Strategy No Strategy Average Least Misery

kNN (k=5) 0.1595 N/A N/A

MF-GPA N/A 0.1341 0.0628

MF-IPA N/A 0.1952 0.1617

WRMF 0.2811 0.2858 0.2801

OCRBM 0.2823 0.2922 0.2951

DLGR 0.3236 0.3252 0.3258

Table 4.3 : Mean AUC of all comparison models with different strategies

AUC

Model/Strategy No Strategy Average Least Misery

kNN (k=5) 0.9367 N/A N/A

MF-GPA N/A 0.9535 0.9297

MF-IPA N/A 0.9635 0.9503

WRMF 0.9811 0.9813 0.981

OCRBM 0.9761 0.9778 0.9782

DLGR 0.988 0.9892 0.9897
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The results of MAP and mean AUC are reported in Table 4.2 and 4.3. The

baseline method kNN does not achieve a good performance because it is hard to find

a set of groups with identical taste over a sparse dataset. For the similar reason, MF-

IPA and MF-GPA also do not perform very well. Note that MF-IPA outperforms

MF-GPA. The main reason for this is that most movies are rated by only one instead

of most members, so the GPA model aggregates a biased group profile. WRMF and

OCRBM perform much better than MF-IPA and MF-GPA because they construct

their models on the group choices instead of the aggregated ratings but use them

in a more subtle way. Moreover, it is easy to see that our model DLGR marginally

outperforms any other method regardless of using an aggregation strategy or not

using a strategy. The main reason is that all these methods except DLGR try to

directly learn a good representation of the group preference from the data. However,

they may fail to learn the expressive features based on such a shallow structure.

In contrast, DLGR can learn a high-level representation from low-level features

through deep architecture which removes the vulnerabilities of data. In particular,

DLGR outperforms its sub-model OCRBM. This is because OCRBM makes no

use of the individual member choices which contain useful features determining the

group choices. In comparison, DLGR provides a more robust solution which not

only models the group choices but also takes advantage of the collective embedding

learned from all members’ choices.

In general, a group with more members implies more different preferences, so it is

harder to find recommendations satisfying all members. In our problem, each house-

hold may contain 2-4 members in this dataset. A house-hold with 2 members, e.g., a

couple, may easily agree on choosing a movie, whereas a household with more than 2

members, e.g., parents and children, may have different tastes due to the generation

gap. Therefore, we additionally evaluated the MAP w.r.t. 2-member households

and the 2+-member households under Average and Least Misery strategies.
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Figure 4.3 plots the MAP w.r.t. the above two cases. We can see that DLGR

outperforms all other comparison methods and the performance difference between

the two cases is relatively small. Such a result proves that DLGR is still effective

to represent group preference even when there are more members with different

preferences. In comparison, other comparison models are constructed in a shallow

manner and are more sensitive to data hence they cannot learn the best features to

represent group preference when the group becomes larger.

4.5 Summary of Contributions

In this chapter, we model a GBRS with deep neural networks. In particular,

the non-IID technique is focused on modeling the coupling relationships between

group members for making group choices. Our main contributions are summarized

as follows:

• We propose a deep architecture model to learn a high-level representation of

group preferences, which avoids the vulnerability of data in traditional ap-

proaches.

• We design a collective DBN over all member profiles of a group so as to disen-

tangle the high-level collective embedding from the low-level member embed-

ding.

• We devise a dual-wing RBM at the top level to learn a comprehensive rep-

resentation of group preferences which jointly both collective embedding and

group choices.

• We conducted empirical evaluations on a real-world data set. The results prove

the superiority of our approach in comparison with state-of-the-art methods.
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Chapter 5

A Social Network-based Recommender Systems

for Modeling User and Item Influential Contexts

5.1 Introduction

RSs essentially involve multiple relations over users, items, and their interactions.

They are heterogeneous and coupled within and between each other [31], forming

multiple relations which can be formalized as user-user relation, item-item relation,

and user-item relation. It is increasingly recognized that leveraging these multi-

relational data is important for addressing challenges in RSs, including social rec-

ommendation, cross-domain problems, sparsity and cold-start problem [20,86,211].

We present a multi-relational RS (MRS) which considers not only social relation-

ships but also item relationships in this chapter. Note that the item-item relations

are often defined with social information, e.g. social tagging systems. Therefore,

the MRS studied in this chapter can be viewed as a generalized SNRS.

We take an example to introduce the motivation of building multi-relational RS

(MRS). Figure 5.1 demonstrates a multi-relational recommendation problem over

the user-user relation, e.g., friends in a social network, the item-item relation, e.g.,

a product line, and the user-item relation, e.g., users’ purchase on items. Given

a user ut in this social network, her/his selections are often influenced by her/his

friends [52]. Moreover, the influences from friends’ friends transitively influence

ut’s choice. Those users whose affect ut’s choices on item it form ut’s influential

context. Similarly, ut’s selection on an item it is also influenced by it’s relevant

items which form it’s influential context. For example, we can infer that ut more
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  User-user Relation Item-item Relation
User-item Relation

ut

is

it

Figure 5.1 : A multi-relational RS consists of user-user relation, user-item relation

and item-item relation. Each user-item interaction is influenced by the user context

and the item context.

probably selects it (Android watch) than is (Apple watch) if we consider influential

contexts of users and items, i.e., the selection of ut’s friends and the compatibility

of electronic products. According to this example, the incorporation of influential

contexts of users and items makes recommendation more accurate and interpretable.

Moreover, it is helpful to overcome the sparsity of user-item interactions and address

both user and item cold-start problem by referring to the influential users and items

in the contexts.

In fact, it needs to deal with various challenges to achieve this MRS. In this work,

we focus on two major ones: (1) How to model the user’s/item’s influential context

in terms of one user-item interaction in multi-relational data? (2) How to learn

the strength of influence from different users or items in different contexts? These

two questions are important and challenging because the influential contexts for

different user-item interactions are different, and the influence from each user/item
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in one context is also different.

The representative RSs which leverage user-user relation and user-item relation

are SNRSs [85, 99, 211]. The main strategy they adopt is to combine collaborative

filtering (CF) and social relation analysis [209,218]. In general, there are two repre-

sentative ways for social recommendation based on matrix factorization (MF): one

is to co-factorize rating information and social information [94,142] and the other is

to add regularization term in optimization function [143]. However, these methods

need to specify the relevance between users, which can hardly learn the high-order

influence from indirect users. Moreover, SNRSs only consider user interaction and

do not consider the influence of relevant items.

A possible workaround is to employ factorization machine (FM) [176] to rep-

resent multi-relational data with a design matrix [177]. However, using a single

design matrix for all relations implicitly assumes the homogeneity of these relations.

Obviously, user-user, item-item, and user-item relations are quite different, which

may degrade the recommendation performance due to their heterogeneities. More-

over, FM is unable to model the strengths of influence from the same users/items

in different influential contexts w.r.t. different target users/items.

In this work, we design Influential-context Aggregation Units (ICAU) to ag-

gregate all user/item influences in a context into an embedding, namely influential

context embedding (ICE). Taking ICAUs as the building blocks, we construct an In-

fluential Context Embedded Multi-relation Recommender System (ICE-MRS) which

considers both user’s and item’s influential contexts when conducting recommenda-

tions.
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5.2 Problem Formulation

As illustrated in Figure 5.1, we build an MRS with user-user, user-item and user-

item relations for more effective recommendation. Let u and U =
{
u1, u2, · · · , u|U|

}
denote a user and the whole user set. RU denotes the user-user relation. Let i and

I =
{
i1, i2, · · · , i|I|

}
denote an item and the whole item set. RI denotes the item-

item relation. The user-item interactions are denoted as RUI = {yu,i|u ∈ U , i ∈ I},

and yu,i could be explicit feedback, e.g., ratings or implicit feedback, e.g., clicks.

Generally, each user-item interaction yu,i is not only decided by user u and item i

but also other users and items in the influential context [31]. Hence, we formally

define a user’s and an item’s influential contexts to model the user-item interactions.

Definition 5.1: User Influential Context (UIC): Given a target user u, the UIC

denotes Cu = {Uu,Ru}, where Uu = {u,U cu} consists of target user u and all influ-

ential users relevant to u, Ru denotes the user relationships over Uu.

Definition 5.2: Item Influential Context (IIC): Given a target item i, the IIC

denotes Ci = {Ii,Ri}, where Ii = {i, Ici } consists of target item i and all influential

items relevant to i, Ri denotes all the item relationships over Ii.

Interaction Score Decomposition: Each user-item interaction yu,i can be

measured by a score function s in terms of the UIC Cu and the IIC Ci; formally, s :

s(Cu, Ci, yu,i) 7→ s〈Cu,Ci〉. According to Definitions 5.1 and 5.2, the overall interaction

score s〈Cu,Ci〉 can be decomposed into four scores:

s〈Cu,Ci〉 = λ1s〈u,i〉 + λ2s〈u,Ici 〉 + λ3s〈Uc
u,i〉 + λ4s〈Uc

u,Ici 〉 (5.1)

where s〈u,i〉 scores user u’s preference on item i; s〈u,Ici 〉 scores u’s preference on influ-

ential items Ici ; s〈Uc
u,i〉 scores relevant users’ preference on i, and s〈Uc

u,Ici 〉 scores the

subsidiary preference between influential users and influential items. λ1, λ2, λ3, λ4

are the scale parameters for weighing these scores.
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Figure 5.2 : The architecture of ICE-MRS for modeling user’s and item’s influential

contexts

5.3 Model and Learning

In this section, we present an Influential Context Embedded MRS (ICE-MRS)

with the neural network model. Specially, we design the influential-context aggre-

gation units (ICAU) to learn ICEs as the core component of this ICE-MRS.

5.3.1 Architecture

The architecture of the ICE-MRS is illustrated in Figure 5.2, which consists of

five components: User Representer EU , UIC Aggregator AU , IIC Representer, IIC

Aggregator AI and user-item interaction scorer SUI . Given a target user ut and the

corresponding UIC Cut , a target item it and the corresponding IIC Cit :
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• User Representer EU : it maps target user ut and its influential users in UIC

to the corresponding user embeddings, i.e., EU(Uut) 7→ Eut where Eut =

{et, e1, · · · eM}.

• Item Representer EI : it maps target item it and its influential items in IIC to

the corresponding item embeddings, i.e., EI(Iit) 7→ Eit where Eit = {vt,v1, · · ·vN}.

• UIC Aggregator AU : it learns a representation rUt for the influential context

Cut , namely influential context embedding (ICE). Formally, we haveAU(Cut , Eut) 7→

rUt .

• IIC Aggregator AI : it learns it’s ICE by aggregating the influential context

Cit , that is, AI(Cit , Eit) 7→ rIt .

• User-item Interaction Scorer SUI : it learns to score the interaction strength

between the target user-item pair 〈ut, it〉 in terms of the user ICE rUt and the

item ICE rIt , namely SUI(r
U
t , r

I
t , yut,it) 7→ s〈Cu,Ci〉 (cf. Eq. 5.1).

This architecture can be implemented with many concrete methods, e.g. the mixture

model. In this work, we implement it by neural network models which have been

proved most effective and efficient in recent years.

5.3.2 Influential-context Aggregation Unit

The ICAUs aim to aggregate the user embeddings Eut or the item embeddings

Eit in a context into an ICE according to the strength of influence from each user or

item. Figure 5.3 demonstrates an ICAU for aggregating user embeddings Eut , which

consists of a two-stage aggregation: S1 and S2.

S1: This stage outputs the subsidiary influence embedding ct through an aggre-
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gation function h(·) over the influential users’ embeddings:

{α1, · · ·αK} = a(e1, · · · eK) (5.2)

ct = h(e1, · · · eK |α1, · · ·αK). (5.3)

where αi denotes the influential strength modeled by a function a(·).

S2: This stage generates the ICE by aggregating the subsidiary influence context

embedding ct and the target embedding et through a gate function f(·):

g = f(ct, et) (5.4)

rt = gct + (1− g)et (5.5)

In ICAU, h and f could be any linear or non-linear functions. In this work,

we implement h by multilayer neural networks in terms of the attention mechanism.

And f is implemented with a gate neural network. Note that the ICAUs can be used

in cascade to aggregate higher order ICEs, which is presented in the next subsection.

5.3.3 User’s Influential Context Embedding

Given a user influential context Cut = {Uut ,Rut} (cf. Definition 5.1), Uut consists

of the target user ut and her/his first-order influential neighbors {ut,m}1≤m≤M , and

each ut,m’s neighbors {ut,m,k}1≤k≤Km , i.e., second-order influential neighbors of ut,

according to the relationships Rut .

To learn the ICE from the UIC Cut , we first employ the User Representer EU

to extract the user embeddings for all users in Uut . The embedding for a first-order

neighbor ut,m is denoted as et,m, and the embedding for a second-order neighbor

ut,m,k is denoted as et,m,k. To generate the ICE for Cut , we construct an ICAU-

based two-level tree-like model as the UIC Aggregator AU to recursively embed both

second-order and first-order neighbors’ influences. Firstly, the second level ICAUs

are used to generate the ICE rt,m w.r.t. each first-order neighbor ut,m. Then, the first
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Figure 5.3 : Influential-context Aggregation Unit (ICAU): A two-stage aggregation

model to construct influential context embedding (ICE)

level ICAU recursively generates the target ICE rUt by aggregating these first-order

ICEs {rt,m}. More details are presented as follows.

The Second Level ICAUs

Taking a first-order influential neighbor ut,m of target user ut as an example, we

present how to implement an ICAU with neural networks for generating the ICE

rt,m w.r.t. ut,m in two stages.

S1: We adopt the attention mechanism to model the influential strength for

each neighbor ut,m,k of ut,m. Specifically, we construct a three-layer attention neural

network to weight the influence according to the user embedding et,m,k. First, et,m,k

is projected into hidden units by a tanh layer to capture nonlinear interaction:

ht,m,k = tanh(W(1)et,m,k + b) (5.6)
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where the weight matrix W(1) ∈ RL×L and we omit the bias term b in the following

equations for concision.

Then, the normalized influence for each neighbor is scored by the softmax(xk) =

exk/
∑

j e
xj function:

αUt,m,k = softmax
(
fISR(θ)

(
W(2)ht,m,k

))
(5.7)

where the weight matrix W(2) ∈ R1×L and fISR(θ) is an inverse square root unit

which is defined as follows:

fISR(θ)(x) =
x√

1 + θx2
(5.8)

where θ is the parameter which decides the range of ISR function. A larger θ results

in a smaller range of ISR. In general, softmax tends to enlarge the difference of input

values, so shrinking the range of input values with the ISR function could learn the

influence from each input. Besides, ISR function can bound the inputs for softmax

to avoid overflow of the exponential function.

Further, the subsidiary influence embedding ct,m is aggregated from the influen-

tial neighbors’ embeddings {et,m,k} according to their influence strengths {αUt,m,k}:

ct,m =
∑Km

k=1
αUt,m,ket,m,k (5.9)

S2: The ICE rt,m w.r.t. the first-order user ut,m is calculated as follows:

rt,m = gt,mct,m + (1− gt,m)et,m (5.10)

where g measures the influence strength from the second-order neighbors. The

influential gate g is modeled by a gate neural network:

gt,m = σ
(
fISR(θ)

(
W(3) tanh

(
W(4)ct,m + W(5)et,m

)))
(5.11)

where σ(z) = 1/(1 + e−z), W(4),W(5) ∈ RL×L and W(3) ∈ R1×L.
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The First Level ICAU

When we obtain the ICEs {rt,m} w.r.t. all first-order influential neighbors, an-

other ICAU at the first level is used to learn the target ICE:

cUt =
∑M

m=1
αUt,mrt,m (5.12)

where αUt,m denotes the influence strength w.r.t. the first-order ICE rt,m, which is

calculated by another three-layer attention network having the same form of Eq. 5.6

and 5.7. Then, we get the ICE rUt w.r.t. the target user ut:

rUt = gUt cUt + (1− gUt )et (5.13)

where gUt is learned by a gate neural network which has the same structure with Eq.

5.11.

5.3.4 Item’s Influential Context Embedding

Given an IIC Ci = {Ii,Ri}, Ri is often built with the item relevance. Differ-

ent from the indirect influence in user-user relation modeling, a user normally only

consider those items directly relevant to the target item when they make a choice.

Therefore, we only consider the first-order influential neighbors of a target item for

modeling IIC. Given {it,n}1≤n≤N w.r.t. target item it, their corresponding embed-

dings vt and {vt,n}1≤n≤N are retrieved by Item Representer EI . As a result, we use

an ICAU to learn the item ICE. The subsidiary influence embedding cIt is calculated

as:

cIt =
∑N

n=1
αIt,nvt,n (5.14)

where the influential strength αIt,n of vt,n is calculated by a three-layer attention

network as in the UIC Aggregator.

αIt,n = softmax
(
fISR(θ)

(
W(6) tanh (W(7)vt,n)

))
(5.15)
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where W(6) ∈ RL×L and W(7) ∈ R1×L.

Subsequently, the ICE rIt w.r.t. it is obtained by aggregating the subsidiary

influence embedding cIt and the target item embedding vt:

rIt = gIt c
I
t + (1− gIt )vt (5.16)

where the influential gate gIt is also learned from a three-layer gate neural network

as in Figure 5.3.

gIt = σ
(
fISR(θ)

(
W(8) tanh

(
W(9)cIt + W(10)vt

)))
(5.17)

where W(8),W(9) ∈ RL×L and W(10) ∈ R1×L.

5.3.5 User-item Interaction Ranking

Each user-item connection denotes a user’s selection on an item. User-item con-

nections can be regarded as one-class preference data [86] which cannot differentiate

user preferences. To handle the one-class problem, we treat the learning on the

user-item interactions as a ranking problem [178]. Given a user ut, we construct

a contrastive item pair to specify the preference order. A positive item ip is the

one which has an observed connection to ut in user-item relationships, i.e. a user-

selected item, while a pseudo-negative item in refers to the one without connection

to ut. Then, we have the preference order 〈ut, ip〉 � 〈ut, in〉. Accordingly, we have

S〈ut,ip〉 ≥ S〈ut,in〉 where S〈ut,i〉 denotes the preference score on item i by the inner

product of rt and ri:

S〈ut,it〉 = ru>t rIt (5.18)

Then, we use the max-margin loss [121] to optimize the ranking order over pairs:

L〈ut,ip〉�〈ut,in〉 = max{0,m− S〈ut,ip〉 + S〈ut,in〉} (5.19)

where m = 10 is set as the maximum margin in this chapter.
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Remark for Scoring Model: if we expand Eq. 5.18, we obtain the following

form by using Eqs. 5.13 and 5.16:

S〈ut,it〉 =
(
gUt cUt + (1− gUt )et

)>(
gIt c

I
t + (1− gIt )vt

)
= (1− gUt )(1− gIt )e>t vt + gUt (1− gIt )cu>t vt

+ (1− gUt )gIt e
>
t cIt + gUt g

I
t c

u>
t cIt (5.20)

According to Eq. 5.1, we find that (i) s〈u,i〉 is modeled by e>t vt; (ii) s〈u,Ici 〉 is modeled

by e>t cIt ; (iii) s〈Uc
u,i〉 is modeled by cU>t vt, and (iv) s〈Uc

u,Ici 〉 is modeled by cU>t cIt .

Correspondingly, λ1 = (1 − gUt )(1 − gIt ), λ2 = gUt (1 − gIt ), λ3 = (1 − gUt )gIt and

λ4 = gUt g
I
t are learned to weigh these scores. Therefore, the above-expanded terms

provide an insight into how the influences in the UIC and the IIC are embedded in

our model to affect the final recommendation.

5.3.6 Training Procedure

For each user selection 〈ut, ip〉, we can construct a triplet 〈ut, ip, in〉 to optimize

the ranking loss L〈ut,ip〉�〈ut,in〉. Then the loss of a mini-batch B for training is given

as:

L =
1

|B|
∑

〈ut,ip,in〉∈B

L〈ut,ip〉�〈ut,in〉 (5.21)

To learn the parameters, we adopt a gradient decent-based algorithm over ∂L/∂W

w.r.t. each weight matrix W in our model. We implement our model using Keras [37]

with Tensorflow GPU version as backend. We use Adam [111] as the gradient

optimizer and the mini-batch size is set to 200.

5.4 Experiments

In this section, we conduct experiments on two real datasets to compare the

recommendation quality of our approach with other state-of-the-art recommendation

methods.
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5.4.1 Data Preparation

Most public datasets for recommendation only consider user-item relation, so a

dataset contains multiple relations, i.e., user-user, user-item, and item-item, is not

easy to find. Fortunately, two datasets, Delicious∗ and Lastfm†, provided by RecSys

Challenge 2011 [27] can satisfy our requirement.

The Delicious dataset contains social network, bookmarking, and tagging infor-

mation from Delicious social bookmarking system. A contact relation is identified

between two users when they belong to a mutual fan relation in Delicious, which

is used as the user-user relation. The user-item relation is constructed from users

and their bookmarked items. The item-item relation is built on the common tags

between items. Given a target item, we assign links to top 10 items which have the

most common tags with.

The Lastfm dataset contains social network, tagging, and music artist informa-

tion from Last.fm online music system. The friend relationships between users are

used as the user-user relation. The items are artists which are connected with users

if the artists are listened by these users. The listening relationships between users

and artists are served as the user-item relation. The item-item relation is built

through the tags using the same method as Delicious. The statistics of the datasets

are summarized in Table 5.1 which contains the number of entities (i.e., users, items

and users+items), number of links in the user-user, the item-item and the user-item

relations and the sparsity in each type of relation. Since both datasets are very

sparse, they will benefit from the additional information from the social network

and item-item relation for recommendation.

∗http://www.delicious.com

†http://www.last.fm
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Table 5.1 : Statistics of the datasets: Delicious and Lastfm

Property User-user Item-item User-Item

D
el

ic
ou

s

#Entity 1,892 17,632 1,892+17,632

#Links 25,434 199,827 104,799

Sparsity 0.0142 0.0012 0.0031

L
as

tf
m

#Entity 1,867 69,226 1,867+69,226

#Links 15,328 682,314 92834

Sparsity 0.0288 0.0002 0.0007

5.4.2 Experimental Settings

To evaluate the ranking accuracy, we adopt two metrics: Mean Average Preci-

sion (MAP) and normalized Discounted Cumulative Gain (nDCG), to measure the

quality of preference ranking and top-N recommendation.

Comparison Methods

In addition to ICE-MRS, the baseline methods are extended from the methods

introduced in Section 3.5 with the following settings:

• BPR-MF : It uses BPR optimization based matrix factorization on the user-

item relation.

• SoRec: It jointly factorizes the social relationship matrix and a user-item

interaction matrix.

• SoicalMF : It adds regularization into MF according to the social network.

• SoReg : It leverage social relationships to regularize the users latent factors.
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• CMF : It is model with three coupled matrices for the user-user, the user-item

and the item-item relation respectively.

• FM : It embeds features into a latent space and models the interactions between

each two features. We integrate user-user, user-item, item-item relations as

the features.

• NFM : It extends FM model with the deep neural networks.

Parameter Settings

The lengths of user/item embeddings and context embeddings are set to 128. To

accelerate the model, we choose top 10 first-order neighbors for each target user and

10 second-order neighbors for each first-order user, and 10 neighbors for each item

in the item-item relation ranked by the influence weights, cf. Eq. 5.7. The θ in Eq.

5.19 is set to 16.

5.4.3 Recommendation Performance

We construct the testing set by holding out 20% user-item interactions as the

ground truths, accompanying with ten times user-item pairs without interaction as

the contrastive samples, i.e., in. The remaining data of user-item relationships are

used for training, together with user-user and item-item relationships.

Overall Comparison

Table 5.2 reports MAP and nDCG at 5 and 10 over all testing users. Among all

methods, our method achieves the best performance in terms of all metrics on both

datasets. Specifically, ICE-MRS demonstrates an approximate 20% improvement

over the second-place method NFM on Delicious and 6.1% improvement over the

second-place method CMF on Lastfm in terms of MAP@5.
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Table 5.2 : Item recommendation for test users of Delicious and Lastfm

Delicious

MAP@5 MAP@20 nDCG@5 nDCG@20

BPR-MF 0.4157 0.3225 0.4318 0.3744

SoRec 0.4174 0.3390 0.4476 0.3965

SocialMF 0.4181 0.3409 0.4520 0.4017

SoReg 0.4239 0.3444 0.4577 0.4056

CMF 0.4375 0.3507 0.4739 0.4158

FM 0.4246 0.3363 0.4522 0.3896

NFM 0.4565 0.3754 0.4924 0.4347

ICE-MRS 0.5477 0.4200 0.6064 0.5273

Lastfm

BPR-MF 0.5154 0.4586 0.6252 0.6334

SoRec 0.5350 0.4775 0.6412 0.6457

SocialMF 0.5489 0.4907 0.6544 0.6575

SoReg 0.5495 0.4878 0.6548 0.6541

CMF 0.5530 0.4928 0.6549 0.6749

FM 0.5366 0.4837 0.6453 0.6723

NFM 0.5462 0.4885 0.6516 0.6702

ICE-MRS 0.5865 0.5302 0.6913 0.7021

Effect of User-user Relation Modeling

BPR-MF more easily suffers from data sparsity than other comparison methods,

because it cannot borrow information from the social relation. As a result, it achieves

the worst performance. In comparison, other methods benefit from the information
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from social network. Especially, ICE-MRS outperforms all other methods, which

should thank to ICAU for precisely weighing the influence from different users and

aggregating high-order influence.

Effect of Item-item Relation Modeling

CMF, FM and NFM consider item-item relation in addition, which makes the

recommendation more effective than social relation only methods. Compared with

MF and FM-based methods, ICE-MRS demonstrates its superiority on integrating

multiple relational data with the influence aggregation modeling.

5.4.4 Recommendation for Cold-start Users and Items

The cold-start problem is ubiquitous in RS which can be categorized into cold-

start users and cold-start items. In the user cold-start problem, for new users, we

recommend items to them. The recommended items’ ranking is regarded as the

evaluation criteria. In the item cold-start problem, for new items, we recommend

them to different users. The ranks over the recommended users are used to evaluate

the performance. In this section, we show the ability of comparison methods for

handling user and item cold-start problem respectively.

Cold-start Users

To test the recommendation for cold-start users, we randomly remove 20% users

and all their links from the user-item relation as the training set. BPR-MF only

considers the user-item relation, so it cannot be used in the cold-start scenario.

The performance compared with other methods are shown in Figure 5.4. ICE-

MRS significantly outperforms other methods on both datasets. On Delicious, in

terms of MAP@5, the relative improvement of ICE-MRS over SoRec, Social MF,

SoReg, CMF, FM and NFM is 42.3%, 32.2%, 29.4%, 21.6%, 19.7% and 12.6%

respectively. On Lastfm, in terms of MAP@5, the relative improvement of ICE-
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Figure 5.4 : Item recommendation for cold-start users of Delicious and Lastfm.

MRS over SoRec, Social MF, SoReg, CMF, FM and NFM is 55.1%, 58.2%, 36.6%,

54.2% 30.7% and 26.1% respectively. Eq. 5.20 gives the insight into why ICE-MRS

can handle this cold-start problem more effectively. It is because the ICEs of users

have embedded the information from their neighbors in the influential context, even

when no historical user selection is observed.

Cold-start Items

To test the case of cold-start items, we randomly remove 20% items and their

all connected edges from user-item relationships. For each testing item, we rank the

predictive scores over users. The MAP and nDCG results are shown in Figure 5.5.

Since SoRec, Social MF and SoReg only model user relation, they cannot handle

cold-start items. Compared with CMF, FM and NFM, ICE-MRS achieves the best

performance on both datasets. Note that ICE-MRS’s performance on cold-start

items is not significant as that for cold-start users. This can be interpreted that the

impact from other users are more influential than the impact from relevant items

when users’ making selection. However, the embedded influential item context can

still provide useful information when no selection is available for a new item.
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Figure 5.5 : User recommendation for cold-start items of Delicious and Lastfm.

5.4.5 Visualization and Interpretation

To interpret the influence from influential users and items when users making a

selection, we randomly choose a user and her/his selection on an artist (User 41 with

Raised Fist) from the LastFM dataset as a study case. We visualize the influential

context w.r.t. the target user and the target item in Figure 5.6 by differentiating the

influence with different edge thickness. We can find that the influence from different

users/items is quite different, for example, User 1808 and User 184 have the common

neighbor 1626 but the influence of User 1626 on User 184 is much larger than on User

1808. In the item network, we observe similar cases from the influential context w.r.t.

Raised Fist. Therefore, these influential contexts can provide the interpretation of

how the target users and the target items are influenced by the influential users and

items to form the connection.

5.5 Summary of Contributions

In this chapter, we model a multi-relational RS with embedding user and item

influence from social network and item network. In particular, the non-IID technique
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Figure 5.6 : The visualization of influential contexts of a sampled user selection on

an artist in the Lastfm dataset. The artists in item network are labeled by their

names and the anonymous users in user network are labeled with IDs. The thickness

of edges specifies the significance of influence.

is focused on modeling the coupling relationships between users and items in terms

of influential contexts. Our main contributions are summarized as follows:

• We propose a framework to model the multi-relational data in recommendation

tasks with considering the user influential context and the item influential

context.

• We design an influence aggregation unit (ICAU) and apply ICAUs to construct

the ICE-MRS as an instantiation of the proposed framework.

• The ICAUs based ICE-MRS empower the interpretability on recommendation

results in terms of the quantitative influence from relevant users and items.
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• We conduct experiments on two real-world multi-relational datasets and the

results show the effectiveness of our model on recommendation quality and

superiority in terms of handling both user and item cold-start problems. In

addition, we visualize learned contexts of a user and item and interpret the

influence.
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Part III

Non-IID RS: Modeling

Non-IIDness on Items
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Chapter 6

A Cross-domain Recommender System for

Modeling the Couplings over Heterogeneous Item

Domains

6.1 Introduction

In the era of Big Data, the huge and rapidly increasing amount of information has

penetrated every corner of our life. However, it is easy to become overwhelmed by

so much information and it can be difficult to find what one is looking for. When we

follow events on Facebook, buy books on Amazon or install apps on a smartphone,

we are encouraged by the underlying systems to provide feedback, e.g., a rating

or a comment. This is because modern RSs can predict personalized preferences

for unconsumed items based on the feedback collected from like-minded users. CF

has been widely studied as a core component of RSs, but in fact, users do not

always provide feedback for various personal reasons, e.g., privacy. As a result, CF

methods tend to suffer from two common challenges: data sparsity [206] and cold-

start [117, 195] as presented in Section 1.2. Some real-world applications naturally

suffer from the data sparsity problem; for instance, users who have recently bought

a new car may not have a new car purchase plan for another five years, therefore the

lack of feedback data becomes a major barrier to the use of current CF methods.

A user usually has sufficient experience in some focused domains (rich data do-

mains) but lacks experience in other domains (deficient data domains). An RS

that can recommend potentially desirable items to users is therefore more useful in

unfamiliar domains. However, it is inevitable that the cold-start issue will be en-
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countered in unfamiliar domains where there is almost no data from which to learn

user preferences. Since users have different interests, their rich data domains and de-

ficient data domains also differ, and it is therefore sensible to leverage users’ feedback

data over multiple domains to find like-minded users to enable the inference of user

preferences in unfamiliar domains. Based on this idea, Cross-Domain Collaborative

Filtering (CDCF) has emerged as an important research topic in recent years [126].

Most current CDCF approaches focus on the product domain [127, 128, 167], but

although the term “domain” usually refers to product domains, it may apply to

more generalized references, such as time domains and spatial domains.

6.1.1 Leveraging Cross-Domain Information

CF methods can generally be sub-divided into two categories: neighborhood-

based (a.k.a. memory-based) and model-based [81, 181, 206]. Therein, the model-

based approach, such as MF [91,117], have gained dominance in recent years. In fact,

we can construct an integrated item set containing the items from all domains so

that traditional CF approaches can be directly applied as naive CDCF approaches.

In this chapter, we refer to neighborhood-based methods and MF-based methods

running on such integrated item sets as kNN-CDCF and MF-CDCF, respectively.

The item factors affecting user preferences in one domain may be quite different from

those in another, but taking the integrated item set as input implicitly assumes the

homogeneity of items as a single domain. As a result, the naive CDCF approach

may lead to poor prediction due to the failure of representing heterogeneities between

domains.

A number of refined CDCF methods have recently been proposed, such as cross-

domain MF (CDMF) models [167,203]. CDMF is based on transfer learning, whose

underlying idea is illustrated in Figure 6.1: the user factor matrix U serves as a

bridge to transfer knowledge from the auxiliary domain (A) to the target domain
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Figure 6.1 : Demonstration of the occurrence of the blinder-transfer issue in CDMF

(T). CDMF models assume that auxiliary data is relatively dense for all users and

all items [167]. However, we argue that this assumption is not always true. Our

argument is based on the well-known power law (long-tail) distribution, as illustrated

in Figure 6.2, where the minority of users and items provide sufficient data while

the majority of users and items provide only a little data. This has an impact on

the hypothesis of traditional CDCF approaches, which results in the deterioration

of prediction performance.

A worse, unavoidable problem of CDCF may be caused by the cold-start issue in

some domains. Since users have quite different interests, a user is usually active in

certain domains but silent in other domains. As shown in Figure 6.1, users always

have different unfamiliar domains which may negatively reduce the recommendation
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Figure 6.2 : The feedback from the majority of users in each domain is scant due

to the power law distribution, and users have different unfamiliar domains due to

differences in interests.

performance of CDMF models due to the heterogeneities between domains. If we

take a close look at how this happens in terms of Figure 6.2, we see that CDMF aims

to improve recommendation on the target domain (T) by utilizing the features of

user preferences (i.e. the factor matrix U) learned from the auxiliary domain (A). A

new user factor matrix U′, which models the user preferences on the target domain

(T), is updated based on the transferred matrix U using the data on (T) [167,203].

Therefore, the user-factor vectors for users are co-determined by the feedback in

the auxiliary and target domains. If no data is available for a user in the target

domain (marked with a red box), the user factor vector ui is simply transferred from

the auxiliary domain without updating. As a result, the prediction on the target

domain tends to yield poor recommendation results using this ui because of the

heterogeneities between two domains. In this thesis, we call this a “blind-transfer”

issue. Recall that the data associated with the majority of users are insufficient and

even absent in a domain, so the above CDCF approaches commonly suffer from such
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blind-transfer issues for realistic online data.

6.1.2 Modeling Domain Factors

The major cause of the blind-transfer issue is the fact that CDMF deals with a

set of user-item data over multiple domains in the traditional MF manner so that

the rating given by user i on item j is only determined by user and item factors,

i.e., ui and vj, but it does not contain the factors to model the difference between

multiple domains. For this reason, CDMF cannot escape the blind-transfer issue,

especially when the data is extremely sparse. We argue that domain factors are an

essential element for representing each domain in the “cross-domain” problem, so

CDCF should take into consideration the domain characteristics to reveal domain-

specific user preferences on items in depth, rather than only user factors and item

factors modeled in CDMF.

As illustrated in Figure 6.3a, our approach allows an exclusive item-factor matrix

for each domain to express heterogeneities. In addition, user-factor matrix U is used

to model general users’ concerns across all domains, and domain-factor matrix D

carries the information to express the traits of each domain. Hence, each observation

can be viewed as the result of the three-way interaction among user, item and

domain factors. In addition, we can interpret that the domain-specific user factors

are generated by the interaction between domain factors and general user factors as

shown in Figure 6.3a. Since the domain-factor vector reflects the characteristics of

a domain and it is always available, thus the domain-specific user preferences can

be obtained to avoid the blind-transfer issue.

6.1.3 Irregular Triadic Relation

According to above analysis, MF-based cross-domain methods, i.e. CDMF, can

only model the dyadic interaction between users and items, so they are inevitable
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to suffer from the blind-transfer issue. As a result, we propose to model three-way

interaction among user, item and domain to avoid this issue. A natural approach

to model high-order interaction, e.g. user-item-tag, user-item-time, is in terms of

tensor factorization (TF) models [180,236]. For such regular triadic relations, let us

denote the user set U , the item set as I and D is the set for the third dimension, i.e.

a triadic relation U × I × D, so they can be naturally represented by a 3D-tensor

as demonstrated in Figure 6.3b. Unfortunately, we cannot use a regular tensor

to deal with CDCF problems, since each domain d has a different domain-specific

item set, Id as shown in Figure 6.3a. Therefore, we cannot obtain a regular triadic

relation over the sets, U ,D and {Id}d∈D. As a result, regular TF models become

not applicable.

In this chapter, we design an irregular TF model, named Weighted Irregular

Tensor Factorization (WITF), to model the irregular triadic relation. As implied

by its name, WITF couples a set of {U × I}d∈D relations among multiple domains
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and derives an optimization form consisting of a TF equivalent component which

enables to capture the irregular triadic interaction and learn the domain factors.

6.2 Problem Formulation

In recent years, matrix factorization-based methods [91, 117] have gained domi-

nance in RSs. However, single-domain MF methods are not able to provide a good

solution to deal with the cold start issue. In the following sections, we will take a

close look at how MF methods suffer from this issue and propose our CDCF solution.

6.2.1 Weighted Regularized Matrix Factorization

Let us consider the MF model from a probabilistic view. Given a data matrix Y

with the entries indexed by (i, j), we can obtain the following joint distribution with

the R-dimensional Gaussian user factor vector ui for each user i and item factor

vector vj for each item j:

P (ui) = N (ui|µi, τ−1
U I) P (vj) = N (vj|µj, τ−1

V I) (6.1)

P (Yij,ui,vj) = N (Yij|u>ivj, w−1
ij ) (6.2)

P (Y,U,V) =
∏
ij

P (Yij,ui,vj)
∏
i

P (ui)
∏
j

P (vj) (6.3)

P (U,V|Y) =
P (Y,U,V)

P (Y)
∝ P (Y,U,V) (6.4)

where I denotes an identity matrix, U = [u1, · · · ,uN ] is the user factor matrix, V =

[v1, · · · ,vM ]is the item factor matrix, and τU , τV , wij are the precision parameters

of the Gaussian distributions. We can learn the user factors and the items factors

through maximum a posteriori (MAP) estimate. According to the Bayesian theorem,

we have the posterior P (U,V|Y) ∝ P (Y,U,V) given in Eq. 6.4. The following

objective function can then be obtained by minimizing the negative log-posterior.

J = argmin
U,V

1

2

[∑
ij

wij(Yij − u>i vj)
2 + τU

∑
i

‖ui − µi‖2 + τV
∑
j

‖vj − µj‖2

]
(6.5)
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Thus, we obtain a Weighted Regularized Matrix Factorization (WRMF) model,

in which the precision parameter wij serves as the weight w.r.t. each entry. Typically,

if we set µi = 0,µj = 0 (i.e., zero-mean priors), wij = 1 for observed rating while

wij = 0 otherwise, and λ = τU = τV (i.e., regularization parameter), then we

immediately obtain the objective of the classical probabilistic MF (PMF) model

[188].

We can estimate user factors and item factors by the gradient-based method

using a coordinate descent strategy. First, the gradient w.r.t. ui and vi can be

easily derived from the objective 6.5:

∂J

∂ui
=
∑
j

wijvjv
>
j ui −

∑
j

wijYijvj − τUµi + τUui (6.6)

∂J

∂vi
=
∑
i

wijuiu
>
i vj −

∑
i

wijYijui − τVµj + τV vi (6.7)

When V is fixed, the optimization w.r.t. each ui is convex. Therefore, it yields a

close-form update equation for ui by setting Eq. 6.6 to zero:

ui ←

(
τUI +

∑
j

wijvjv
>
j

)−1(
τUµi +

∑
j

wijYijvj

)
(6.8)

Similarly, we can obtain the update equation for each vj with U being fixed:

vj ←

(
τV I +

∑
j

wijuju
>
j

)−1(
τVµj +

∑
i

wijYijui

)
(6.9)

Now, let us consider a fully cold-start case where user i has no data, i.e. wij = 0

for all j, and the user factor vector ui is always the prior mean µi, since no data is

available to update it. In such a cold-start case, the prediction on the preferences

of user i is fully dependent on the given prior. For PMF, the prior is assumed to be

zero-mean so it is unavailable to conduct recommendation for fully cold-start users.

6.2.2 Learning Priors from Cross-Domain Feedback

A straightforward way to resolve a cold-start problem when few data are available

from the viewpoint of the Bayesian probabilistic model is to find more informative
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priors. Since we argue that it is possible to learn user preference by leveraging

information from other domains, we propose to learn the priors over the cross-

domain feedback data.

As analyzed previously, we argue that CDCF should take domain factors into

consideration, thus the triadic user-item-domain relation needs to be modeled. Since

MF methods can only model two-way interactions between users and items, they can-

not capture high-order interaction across domains. We therefore need to construct

a higher order latent factor model to capture the three-way interaction user-item-

domain. Intuitively, the tensor factorization (TF) model [114] is a good candidate

for representing this type of third-order interaction. A regular tensor requires each

domain slice to have identical items. However, as illustrated in Figure 6.3, each do-

main slice has a domain-specific item set in the CDCF problem, therefore it cannot

form a regular tensor for factorization. To work with this problem, we propose a

weighted irregular tensor factorization (WITF) model which relaxes the constraint

that dictates that the same item set should be employed for all domains. As a result,

WITF respectively learns an item factor matrix for each domain, as shown in Figure

6.3.

6.2.3 Learning Posterior on Target Domain for Fine Tuning

When WITF is learned, we can obtain the general user factors ui for each user,

the domain factors dk, and item factors vkj for each item in domain k, as shown in

Figure 6.3. Although these factors can be used to reconstruct the entries for each

domain [83], they may not perfectly predict the user preference in a target domain

for recommendation because these estimates are retrieved by fitting the data over

all domains. Therefore, we need a fine-tuning procedure to adjust those learned

factors by tightly refitting the evidence in the target domain.

In Bayesian statistics, the posterior probability is the conditional probability that
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is assigned after the relevant evidence is taken into account. As presented previously,

WRMF learns parameters from the data in a given domain, and the factors learned

from WITF clearly serve as good informative priors for WRMF. Therefore, we can

obtain the refined user factors and item factors in a target domain k by MAP

estimation (c.f. Eq. 6.4, 6.5, 6.6, 6.7). The prior mean of user factors can be

constructed in terms of the general user factors ui and the domain factors dk, and

the item factors vkj can directly serve as the prior mean of item factors of WRMF

(cf. Eq. 6.1):

µi = diag(dk)ui µj = vkj (6.10)

diag(dk) generates a diagonal matrix with the diagonal elements dk. This can be

regarded as a transfer learning procedure which transfers the factors estimated from

WITF as the priors to regularize the user factors and item factors when learning

WRMF (cf. Eq. 6.5).

6.3 Weighted Irregular Tensor Factorization

6.3.1 Transformation

As previously discussed, we need to model the three-way interaction between

user-item-domain in the CDCF problem to capture heterogeneities between do-

mains. An intuitive way to capture this three-way interaction is in terms of a

third-order tensor, where each frontal slice in the cube corresponds to a feedback

data matrix over users and items for each domain. However, as illustrated in the

left-hand image of Figure 6.4, each domain consists of a different number of domain-

specific items, so it cannot form a regular tensor. Therefore, we need to transform

the set of heterogeneous domain matrices into a regular tensor for the purpose of

applying the TF. To work with this challenge, we designed a novel weighted irregu-

lar TF model which conducts a transformation over heterogeneous domain matrices

into a regular tensor consisting of virtual items and virtual data, as illustrated in
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Figure 6.4 : WITF transforms the slices with heterogeneous domain-specific items

into a regular third-order tensor containing an identical virtual item set.

Figure 6.4.

Loss Function: Let {X1,X2, · · · ,XK} denote the data matrices of all domains,

where each matrix, Xk, has the size N ×Mk, N is the number of users and Mk is

the number of items in domain k. We denote U ∈ RN×R as the user factor matrix

(Ui,: refers to the factor vector of user i), Vk ∈ RMk×R is the item factor matrix

of domain k (Vk,j,: refers to the factor vector of item j), and Σk = diag(Ck,:) is an

R×R diagonal matrix where Ck,: refers to the factor vector of the domain k. Given

the user factor vector Ui,:, the item factor vector Vk,j,: and the domain factor vector

Ck,:, the likelihood of entry Xk,i,j is given by:

P (Xk,i,j|Ui,:,Vk,j,:,Ck,:) = N (Xk,i,j|Ui,ΣkV
T
k,j,:, w

−1
k,i,j) (6.11)

Then, the likelihood over the entries over all domains can be given by:

P (X1,X2, · · · ,Xk|U,V1,V2, · · · ,C) =
K∏
k=1

N∏
i=1

Mk∏
j=1

P (Xk,i,j|Ui,:,Vk,j,:,Ck,:) (6.12)

We can easily obtain the following weighted loss function by minimizing the

above negative log-likelihood:

J = argmin
U,V,C

1

2

K∑
k=1

‖Wk ·∗ (Xk −UΣkV
>
k )‖2

F (6.13)
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where the entry of the weight matrix is Wk,i,j =
√
wk,i,j. That is, each domain

matrix Xk has the factorization form UΣkV
>
k . However, this factorization form is

not unique without additional constraints [107]. For example, UΣkV
>
k =

(UΣkA
−1F−1)F(VkA)> = U′FV′> where F is a diagonal matrix and

U′ = UΣkA
−1F−1, V′ = (VkA)>, so we get a new factorization form w.r.t. Xk.

To improve the uniqueness property, Harshman [70] proposed the imposition of

a constraint whereby the cross product V>k Vk is an invariant matrix over k, i.e.,

Φ = V>1 V1 = V>2 V2 = · · · = V>KVK . Following this suggestion [70], we impose

a column-wise orthonormal matrix Pk ∈ RMk×R (i.e. P>k Pk = I) and a square

matrix V ∈ RR×R that does not vary by slice. We then find that the cross-product

constraint is enforced implicitly since

V>k Vk = (PkV)>(PkV) = V>V = Φ (6.14)

Accordingly, the loss function of Eq. 6.13 can be rewritten as

J = argmin
U,V,C

1

2

K∑
k=1

‖Wk ·∗ (Xk −UΣk(PkV)>)‖2

F s.t.P>k Pk = I (6.15)

Weighting Influence over Domains: From Eq. 6.15, user factor matrix U is

shared across all domains, i.e. learning U is affected by the loss of data in all domains.

However, the amount of data in each domain is quite different. Some domains may

have many items and extensive feedback while other domains may only have a few

items and little feedback. As a result, U tends to be mainly determined by domains

with a large amount of data. Hence, we can assign a weight ωk > 0 to the loss in

each domain to control the penalty of this loss.

J = argmin
U,V,C

1

2

K∑
k=1

ωk‖Wk ·∗ (Xk −UΣk(PkV)>)‖2

F s.t.P>k Pk = I (6.16)

Intuitively, if we assign a large weight to the loss in a domain, then factor matrix

U is largely learned from the factorization over this domain. Note that a change of U



124

will update other factor matrices V,C,Pk in turn during the process of factorization.

Therefore, we can control the learning result of all factor matrices by tuning the

weight assigned to each slice. In fact, ωk can be absorbed into Wk, that is, we can

rewrite the entry of the weight matrix as

Wk,i,j =
√
ωkwk,i,j (6.17)

Thus, we still have the same form of loss function as given by Eq. 6.15. In addition,

we denote Ẅ = Wk ·∗ Wk as the element-wise squared Wk, which is involved in

most of the following computations.

Ẅk,i,j = ωkwk,i,j (6.18)

Equivalence to TF: The loss function given by Eq. 6.15 is the summation of loss

over the matrix Xk of each domain with different sizes, which still cannot capture

the interaction across domains. Unfortunately, Eq. 6.15 cannot be transformed

into a TF problem in terms of PARAFAC2 [107] to calculate the weighted loss over

each domain, due to the Hadamard product. To enable it to capture cross-domain

correlation, we give the following theorem to transform Eq. 6.15 into an equivalent

TF problem. The proof of this theorem can be found in the appendix of [85]..

Theorem 6.1: Minimizing the weighted loss given by Eq. 6.15 is equivalent to

minimizing

J = argmin
U,V,C

1

2

[
‖Y − JU,V,CK‖2 +

∑
k

‖X̂k ·∗ Hk‖
2

F

]
s.t.P>k Pk = I (6.19)

where Y ∈ RN×R×K is a third-order tensor with K slices: Yk = ZkPk, X̂k =

UΣk(PkV)> and Hk =
√

(Ẅk − 1 · 1>), i.e. Hk,i,j =
√
ωkwk,i,j − 1. Here, we

denote Zk = Ẅk ·∗ Xk.

The first term of 6.19 is the unweighted loss on fitting Y , and the second term

is derived from the transformation from Eq. 6.15 to Eq. 6.19 by eliminating the
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weight matrices {Wk} from the weighted loss over {Xk} (see the derivation in the

Appendix); it can be interpreted as weighted loss compensation to the unweighted

loss on fitting Y to keep the equivalence between Eq. 6.15 and Eq. 6.19. There-

fore, we can now use a TF approach to capture the high-order interaction between

domains.

We obtain the final objective by appending the regularization terms to avoid

overfitting.

J = argmin
U,V,C

1

2

[
(‖Y − JU,V,CK‖2 + λU‖U‖2

F + λV ‖V‖2
F + λC‖C‖2

F )︸ ︷︷ ︸
1:Regularized TF Model

(6.20)

+
∑
k

‖X̂k ·∗ Hk‖
2

F︸ ︷︷ ︸
2:Loss Compensation

]
s.t.P>k Pk = I

6.3.2 Parameter Learning

Given the above objective function, we designed a constrained optimization algo-

rithm to learn the parameters Θ = (U,V,C, {Pk}). This algorithm consists of two

sub-procedures: one is to learn {Pk}) with the column-wise orthonormal constraint;

the other is to learn a TF w.r.t. {U,V,C}.

Finding Constrained {Pk}: When {U,V,C} are fixed, learning Pk is con-

ducted to solve the following constrained weighted least squares (WLS) problem on

the data of each domain k (cf. Eq. 6.15)

J = argmin
{Pk}

1

2

K∑
k=1

‖Wk ·∗ (Xk −UΣk(PkV)>)‖2

F s.t.P>k Pk = I (6.21)

This corresponds to a WLS-based Orthogonal Procrustes Problem [62]. Now,

let M = UΣkV
>, and we can use an iterative approach [64, 108] to find Pk by

minimizing

‖[MP̂>k −Wk ·∗ (MP̂>k )−Xk]−MP>k ‖
2

F (6.22)
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where Wk = ẄkD
−1 and D = diag(max(Ẅk,i,:)) is a diagonal matrix whose diag-

onal elements are the maximum elements of the rows of Ẅk, and P̂k denotes the

current estimate of Pk. Now, let G = MP̂>k −Wk ·∗ (MP̂>k )−Xk ), and the above

function leads to the orthogonal Procrustes problem of ‖G−MP>k ‖
2

F , which has a

close-form solution [38,64]:

G>DM ≈ ARΣRB>R (6.23)

Pk = ARB>R (6.24)

where ARΣRB>R is the truncated R-rank SVD on the matrix G>DM. The estimated

Pk is then used as P̂k in the next iteration.

Finding U, V, C: When the column-wise orthonormal matrices {Pk} are given,

we need to resolve the TF-based optimization problem given in Eq. 6.20. Because of

the Hadamard product in the loss compensation part of Eq. 6.20, we cannot obtain

the gradient w.r.t. the matrix U as a whole, but we can obtain the gradient w.r.t.

each row of U, i.e. the factor vector of each user. Referring to the gradients in Eq.

3.9 for TF, we have

∂J

∂Ui,:

= −Y(1),i,:(C·∗V)+U(C>C·∗V>V+λUUi,:+Ui,:

K∑
k=1

[Σk(PkV)>Ωk,iPkVΣk])

(6.25)

where Ωk,i = diag(Ẅk,i,:)− I is a diagonal matrix. We set this partial derivative to

0, and the update equation w.r.t. Ui,: is obtained.

Ui,: = Y(1),i,:(C�V)

(
C>C ·∗ V>V +

K∑
k=1

[Σk(PkV)>Ωk,iPkVΣk]

)−1

(6.26)

Ck,: = Y(3),i,:(V �U)

(
U>U ·∗ V>V + λCI

N∑
i=1

[Σi(PkV)>Ωk,iPkVΣi]

)−1

(6.27)

where Σi = diag(Ui,:). The partial derivative w.r.t. V is

∂J

∂V
= −Y(2)(C�U)+V(C>C ·∗U>U+λV Vi,: +

K∑
k=1

N∑
i=1

P>k Ωk,iPkVΩkU
T
i,:Ui,:Σk])

(6.28)
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Due to (P>k Ωk,iPkV)Ωk(U
T
i,:Ui,:Σk) having the form AVB, we cannot simply obtain

the update equation as above. According to the property of the Kronecker product,

we place the vectorization operator on both sides of the above equation, and then

we obtain:

vec
∂J

∂V
= −vec[Y(2)(C�U)] + vec[V(C>C ·∗ U>U]

+ vec

(
K∑
k=1

N∑
i=1

P>k Ωk,iPkVΣkU
>
i,:Ui,:Σk

)

= −vec[Y(2)(C�U)]

+

[
(C>C ·∗ U>U + λV I +

K∑
k=1

N∑
i=1

(ΣkU
>
i,:Ui,:Σk)⊗ (P>k Ωk,iPk)

]
vecV

where the vectorization of a matrix is a transformation which converts the matrix

into a column vector. Accordingly, we can obtain the update equation w.r.t. vecV:

vecV =

[
(C>C ·∗ U>U + λV I +

K∑
k=1

N∑
i=1

(ΣkU
>
i,:Ui,:Σk)⊗ (P>k Ωk,iPk)

]−1

(6.29)

vec[Y(2)(C�U)]

Algorithm Summarization: Algorithm I summarizes the parameter learning

procedure. In particular, we find that Ui,:, Ck,: and Pk are updated in a parallel

scheme by taking advantage of the conditional independence. V is updated as a

whole, but its size is very small, only R × R, and is not dependent on the number

of users and items. In Eq. 6.26, 6.27 and 6.29, we need to respectively compute

their matrix inversions. In fact, we can avoid computing these inversions by solving

linear systems. Algorithm I consists of two parts of sub-iterations, and in practice,

we find that the number of sub-iterations can be set with a small value, i.e. m and n

are set as less than 5 in general. In our experiments, we set m=n=1 which produces

a sufficiently good result. This is because too many iterations easily become stuck

in poor local minima. According to the analysis, this algorithm can be executed

very efficiently in a powerful parallel computing environment. Note that Steps 4
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and 5 in Algorithm I constitute an optional sub-procedure for adding noisy data

from neighbors to relieve overfitting and improve generalization when data is very

sparse. The detail of this sub-procedure will be discussed in Section 6.4.

6.3.3 Weight Matrix Configuration

The weight matrices play an important role in the WITF model. From Eq. (18),

we can find the weight matrix in each domain which consists of the weight on each

entry of data matrix, wk,i,j, and the weight of domain influence, ωk.

Weights over Data

The data in RSs can usually be divided into two categories: n-ary preference

data, such as ratings, and unary preference data, such as clicks or purchases.

N-ary Preference Data: The multilevel ratings, e.g. five-star rating data,

which explicitly differentiate user preferences, are typical of n-ary feedback (n ≥ 2).

This kind of feedback is usually treated as a missing data problem. That is, we

only model observed ratings and the remaining entries are treated as missing. An

indicative matrix of binary weights, which has been successfully applied in MF and

TF methods [2,204], is often used in this type of case. Based on this setting, we set

the weights for n-ary preference data as follows

wk,i,j =


1 (k, i, j) is an observation

a (k, i, j) is a noisy example

0 else

(6.30)

Here, a ≤ 1 is a smaller constant weight assigned to the additional noisy examples

which serve as virtual data. In practice, we can simply let a = 1 and tune the

number of imposed noisy examples. This is discussed in more detail in the following

subsection. As a result, the entries of weight matrices for n-ary preference data are
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given by

Ẅk,i,j =


ωk (k, i, j) is an observation

aωk (k, i, j) is a noisy example

0 else

(6.31)

Under this setting, we find that the zero weights eliminate the loss on fitting missing

entries. Therefore, we can use a set of sparse matrices to store only observed entries

for each domain.

Unary Preference Data: In real-world applications, explicit preference data is

not always available but implicit feedback, e.g. clicks and purchases, is more easily

obtained. For example, users rarely rate their bought items, but their purchase

record is available in the system. Observed entries are usually represented by 1 and

blanks by 0 for this kind of data. This implicit feedback is called unary preference

rather than binary preference because the blanks are usually generated as a result

of users’ lack of awareness and do not necessarily indicate user dislike [75]. Unary

preference data are also known as one-class data in some literature [167].

As a result, we assign a higher confidence level to entries with observed choices

and a lower confidence level to entries without observed choices [82]. Recall that the

confidence level is controlled by the precision parameter in a Gaussian distribution.

In our model, the precision parameter of the distribution of each entry corresponds

to the weight, cf. Eq. 3.9. Therefore, we can differentiate between the weights on

observed choice entries and those on unobserved choice entries. A similar weighting

strategy has been successfully applied in some MF models for unary feedback [91,

165]. In the WITF model, we set the weights for unary feedback as follows:

wk,i,j =


ck,i,j + 1 (k, i, j) is an observation

1 else

(6.32)

where ck,i,j ≥ 0 denotes the confidence parameter which can be set a single value [91]
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for each domain or can be set different values for each user and item [82, 165], We

find that the weights on unobserved choices are always 1 (a minimal confidence)

whereas the weights on observed choices are ck,i,j + 1 ≥ 1. Hence, this guarantees

that the confidence level on observed choices, i.e. true positive instances, is higher

than it is on unobserved ones, i.e. uncertainly negative instances. Accordingly, the

entries of the final weight matrices for unary preference data are given by

Ẅk,i,j =


ωkck,i,j (k, i, j) is an observation

ωk else

(6.33)

Weights over Domains

As previously noted, ωk is used to trade off the influence between domains. The

optimal weight configuration can be found by some advanced search methods, e.g.

genetic algorithm [83]. However, the number of possible configuration increases

exponentially with the number of domains so this approach is too time-consuming

in practice. Here, we present an empirical strategy to seek a suboptimal weight

configuration for WITF. The number of training examples on each domain may be

quite different, so learning WITF can be regarded as a problem to fit imbalance

data over multiple domains. Cost-sensitive learning [251] is an often used approach

to dealing with such imbalance data, where a typical process is to assign different

weights to training examples of different classes (here corresponds to domains) in

proportion to the misclassification costs (here corresponds to the loss of fitting all

training examples of a domain). Without loss of generality, we fix ωT for the target

domain T as 1 because it does not change the optimization problem by scaling all

{ωk}. Now, let #OT denote the number of training examples on the target domain

and #Ok denote the number of training examples on an auxiliary domain k; we then

empirically set ωk as follows:

ωk = αk
#OT

#Ok

(6.34)
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where α ≥ 0 is a proportional parameter which controls the amount of influence

from auxiliary domains. Since loss Lk of fitting training examples is proportional

to #Ok, i.e. Lk ∝ ωk#Ok, we have the contribution ratio between the loss of an

auxiliary domain Lk and the that of the target domain LT by using Eq. 6.34:

Lk
LT
∝ ωk#Ok

1#OT

= αk (6.35)

That is, the amount of contribution from the auxiliary domain is controlled by αk in

terms of scaling the cost of loss on fitting the data on this auxiliary domain. A small

αk tends to bypass the influence from the auxiliary domain so the user preference are

mainly learned from the target domain, whereas a large αk borrows large amount of

information from the auxiliary domain. That is, a larger αk implies more compatible

user preferences between the target domain and the auxiliary domain, therefore we

can assess the heterogeneities between different auxiliary domains and target domain

according to αk . In general, an optimal αk is often selected from a set of given values

in terms of cross-validation.

6.4 Remarks

6.4.1 Tricks on Sparse Weight Matrices for Complexity Reduction

The weight matrices are only involved in the derivatives of the loss compensation

term when computing the parameter updating equations: Eq. 6.26, 6.27, 6.29. In

particular, we find that the term related to these weights has the form A>k Ωk,iAk,

and specifically, Ak = PkVΣk in Eq. 6.26, Ak = PkV in Eq. 6.27 and Ak = Pk in

Eq. 6.29. Clearly, Ak does not contain the subscript i, so it can be pre-computed

before looping the user index i. As a result, we can design a more efficient computing

strategy in consideration of the weights.

Let us now take Eq. 6.26 as the example. We can expand A>k Ωk,iAk as

A>k diag(Ẅk,i,:)Ak − A>k Ak for explicit preference data. Since diag(Ẅk,i,:) only



132

contains mk,i non-zero entries for user i on domain k, A>k diag(Ẅk,i,:)Ak can be

computed in time O(
∑

k R
2mk,i). Note that both R and mk,i are small, so the

time complexity is very low. The total time complexity for looping all users is

O(N
∑

k R
2mk) where mk denotes the mean of the number of observations over users

on domain k. The computation on the term
∑K

k=1[A>k Ak] is in time O(
∑

k R
2Mk),

which can be pre-computed before looping. As a whole, the total time complexity

on looping all users is O(N
∑

k R
2mk +

∑
k R

2Mk). In fact, it can be finished in

time O(
∑

k R
2mk +

∑
k R

2Mk)), when we loop users in a parallel scheme, as given

in Algorithm 1.

The diagonal weight matrix Ωk,i = diag(Ẅk,i,:)−I in the case of unary preferences

can be equivalently rewritten as [diag(Ẅk,i,:)−ωkI]− (1−ωk)I. From Eq. 6.33, we

find that the term [diag(Ẅk,i,:) − ωkI] only contains mk,i non-zero diagonal entries

with the value ωkc. Therefore,
∑K

k=1[A>k [diag(Ẅk,i,:)−ωkI]Ak] can be computed in

time O(N
∑

k R
2mk). That is, it can be finished in time O(

∑
k R

2mk) in a parallel

scheme. The term (1 − ωk)
∑K

k=1[A>k Ak] can be pre-computed in time
∑

k R
2Mk.

Therefore, the total time complexity is the same as the explicit feedback case, i.e.

O(N
∑

k R
2mk +

∑
k R

2Mk) and O(
∑

k R
2mk +

∑
k R

2Mk) in a parallel fashion.

Similar tricks can be applied to efficiently compute Eq. 6.27 and 6.29 to loop users.

6.4.2 Training with Additional Noisy Examples for Improving General-

ization

As mentioned previously, users’ feedback follows power-law distribution in most

domains; that is to say, all users in the long tail are cold-start and have very few

data. We only model the observed ratings for explicit feedback, which tends to

lead to very poor generalization performance as a result of overfitting with too few

data. Table 6.1 depicts statistics from a real-world explicit feedback dataset in the

experiment section, from which we find that the mean number of ratings over users
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Table 6.1 : Statistics of Epinions Dataset over Five Heterogeneous Domains

Domain # Items #Ratings
#Users

#Ratings
#Items

Sparsity

Kids & Family* 3,769 4.9309 9.9077 0.0013

Hotels & Travel* 2,545 3.921 11.6676 0.0015

Restaurants & Gourmet 2,543 3.3394 9.9446 0.0013

Wellness & Beauty 3,852 3.5481 6.9756 0.0009

Home and Garden 2,785 2.6003 7.0707 0.0009

is less than 5 in each domain, i.e., the total number of observations is less than 5N.

The data are even sparser in the real-world scenario since we removed some users

and items with too few data from the experiments. However, the number of factors,

R, is normally larger than 5. Therefore, the total number of parameters for a domain

(all latent user factors, item factors and domain factors) is NR+MkR+R >> 5N ,

even if we set R = 5. The number of parameters is much greater than the number

of observations, which leads to overfitting issues and results in very poor prediction

performance.

In the case of fewer observations and more parameters, we have tried to tune

the regularization parameters λU , λV , λC but have failed to improve performance

significantly, which may be attributable to data being too sparse data and having

a rank problem of a matrix, namely many rows are all zeros. As a result, we found

another effective way to tackle this issue, and to be free from tuning λU , λV , λC . It

has been illustrated in the literature [Bishop 1995] that training by adding noise

is equivalent to regularization. However, simply adding noise to observations does

not change the sparsity of data. In our framework, we train WITF to fill noisy

examples into randomly selected blank entries instead of merely smoothing objective

functions (regularization) by adding noise onto observed data. This strategy has
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been effectively applied to improve generalization [159, 219]. In detail, we fill the

blanks with Gaussian noisy virtual examples as specified in Algorithm I. First, we

randomly select S blank entries for each user. Then, a noisy virtual example is

generated as X̃kij = µk + ekij where ekij ∼ N (0,Σ2) for each selected blank entry,

where µk denotes the mean of observed data on domain k. Accordingly, we assign

small weights to these randomly generated examples (cf. Eq. 6.31) while larger

weights to real observations to differentiate between their confidence levels. The

setting of S is dependent on the amount of data. Generally, sparser data requires

larger S, and we will compare performance using different settings of S over the

data with different sparsities in the experiment section.

6.4.3 Post-Learning

When the parameters U,V,C, {Pk} are learned from WITF, the user factor

matrix is represented as Uk = ΣkU
> and the item factor matrix is Vk = (PkV)>

in a given target domain k. We can then immediately use Uk,Vk for prediction, as

follows:

X̂k = U>k Vk = UΣk(PkV)> (6.36)

X̂k is the predictive data matrix of domain k. The recommendation list can then

be ranked according to the predictive values.

As presented in Section 6.2.3, U,V,C, {Pk} are estimated from the data over all

domains, so Uk may not perfectly represent the user preference feature in the target

domain and Vk also may not perfectly represent the feature of items. Therefore, we

use the data in the target domain to finely tune Uk and Vk. The factors Uk and

Vk learned from WITF serve as a good informative prior means for the WRMF (cf.

Eq. 6.1), so we have

µ = Uk,:,i µj = Vk,:,j (6.37)

Then, we use the MAP estimator to alternately update user factor vector ui by Eq.



135

6.8 and item factor vector vj by Eq. 6.9 until convergence. Thus, we obtain the re-

fined user factor matrix U = [u1, · · · ,uN ] and item factor matrix V = [v1, · · · ,vMk
].

From Eq. 6.8 and Eq. 6.9, we find that the regularization parameters τU and

τV control the strength of shrinkage of ui and vj towards the prior means µi, i.e.

Uk,:,i and µj, i.e. Vk,:,j. In particular, it obtains ui = µi and vj = µj when we set

large τU and τV to place huge regularization on ui and vj. Therefore, the prediction

performance on finely tuned parameters will never be worse than the performance

achieved directly using the parameters learned from WITF.

6.5 Experiments

In this section, we evaluate our models and other state-of-the-art methods with

a set of metrics to compare prediction performance. The experiments are conducted

on three real world datasets covering ratings, user clicks history, and time-period

separated data.

6.5.1 Comparison Methods

In the following experiments, a group of state-of-the-art methods (cf. Section

3.5) are employed for comparison, where some of these methods are used for explicit

feedback and some others are used for implicit feedback.

• MostPop: This applies the simplest strategy to rank items by their popularity

(measured by the number of observations associated with items).

• kNN-CDCF : The naive user-based neighborhood CDCF model uses the in-

tegrated item set. In this experiment, we use top 10 nearest neighbors (i.e.

k=10) with the highest similarity.

• PMF : It is used as a representative single-domain CF method. In the experi-

ments, we train it only using the target domain data.
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• PMF-CDCF : We use PMF as a naive CDMF model which takes the concate-

nated rating matrix over all domains as the training data.

• MF-IF : This can be regarded as a zero-mean based WRMF model to deal

with implicit feedback. We use it as a single-domain MF model on implicit

feedback data of target domain.

• MF-CDCF-IF : We use MF-IF as an implicit feedback based CDMF model

which takes the concatenated implicit data matrix over all domains as the

training data.

• CMF : Collective matrix factorization works as a CDMF model. In the exper-

iments, we couple the rating matrix of each domain on user dimension.

• PARAFAC2 : It does not have a mechanism to control the influence from each

domain when applied to CDCF problem. Furthermore, it cannot deal with

implicit feedback under unary preference assumption. Therefore, we run it

under binary assumption when conducting experiments on implicit feedback.

• CDTF : This a model developed in our previous work which tunes the weight

to control the influence between auxiliary domains and target domain by a

genetic algorithm.

• CDTF-IF : This is a CDTF-based model that works with implicit feedback [83].

• WITF : This is an irregular TF model proposed in this chapter, which is able

to deal with explicit and implicit feedback in a unified framework. In the

experiments, we directly use the parameters estimated from WITF to conduct

prediction.

• WITF+WRMF : The parameters learned from WITF serve as the priors for

WRMF and are finely tuned by MAP on the target domain (cf. Section 6.4.3).

Then, we use the refined parameters for prediction.
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As discussed previously, we set the number of latent factors as 5, i.e. R = 5,

which produces the best results in the following experiments, since a larger R easily

leads to the overfitting on sparse datasets for all above latent factor models.

6.5.2 Evaluation Metric

We conducted experiments with all the comparison methods on rating data (the

case of n-ary preference) and click data (the case of unary preference). We used

rating metrics to assess performance on the rating data and ranking metrics to

assess performance on the click data.

6.5.3 Rating Prediction on Epinions.com

Epinions.com, set up in 1999 and ultimately acquired by eBay in 2005, was a

general product review platform where ratings, buying tips and advice were gener-

ated by consumers to help users decide on purchases. The products on Epinions.com

cover a number of domains, such as electronics, movies, health, etc. The crawled

dataset [210] contains 5-level ratings over products in 28 domains. In this experi-

ment, we chose five domains to construct the cross-domain dataset: Kids & Family,

Hotels & Travel, Restaurants & Gourmet, Wellness & Beauty and Home and Gar-

den. User preferences are clearly relevant but quite heterogeneous between these

domains, so this dataset is very suitable for testing which CDCF methods are able

to appropriately leverage information between the target domain and heterogeneous

auxiliary domains.

Data Preparation

In this experiment, we extracted those users who had rated at least two items in

one of the five domains and the items which had been rated by two users from the

raw dataset. As a result, we obtained 7,573 users and 15,494 items. Some evaluation

statistics from this dataset are reported in Table 6.1, from which we can see that
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Figure 6.5 : Rating distributions of items on Kids & Family and Hotel & Travel

show obvious long tails.

the mean number of ratings over users is less than 5 in each domain. That is, most

users have unfamiliar domains and largely suffer from the cold-start issue.

In this experiment, we respectively chose Kids & Family and Hotels & Travel as

the target domains for evaluating the rating prediction performance for all compari-

son methods. Figure 6.5 respectively demonstrates the rating distribution over items

on each of the target domains, where we can observe obvious long tails. Therefore,

it is a very suitable scenario to borrow information from other domains to improve

the inference on user preferences on the target domain. Given a target domain, we

constructed the trainingtesting sets as follows. First, we randomly withheld 20%

of the rating data from the target domain as the ground truth for testing, denoted

as TS-20%, and the remaining 80% of data, denoted as TR-80% were used as the

training set. In the same way, we constructed a sparser training set by withhold-

ing 50% of data, denoted as TS-50%, for testing, and the remaining 50% of data,

denoted as TR-50%, were used as the training set.

Rating Prediction Performance Comparison

Table 6.2 reports the RMSEs on the target domain Kids & Family and Hotels

& Travel respectively over all testing users. Clearly, kNN-CDCF underperforms all

comparison methods for all cases. This is because a user-based method such as this
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often fails to find existing ratings on tail items from neighbors to generate effective

prediction. As for model-based methods, we can see that the TF-based models, i.e.

PRAFAC2, CDTF, WITF, WITF+WRMF overall achieve better performance than

MF-based models. This proves that the TF methods benefit from the modeling of

three-way interaction between users, items and domains, which captures higher or-

der information that is unable to learn from MF methods. In particular, we find the

performance of all comparison methods is relatively close when the data are rela-

tively dense (TR-80% cases), whereas the margins between TF-based methods and

other methods become much wider when the data become sparser (TR-50% cases).

Comparing CMF with PMF-CDCF, we find that CMF overall outperforms PMF-

CDCF. The reason is that PMF-CDCF learns user preference on an integrated item

set which ignores the heterogeneity between domains, especially when the amount

of data in auxiliary domains is much larger than it is in the target domain. In

comparison, CMF retains the rating matrix of each domain and provides a more

effective way of controlling the knowledge transfer between domains.

Comparing all TF-based methods, we find that PARAFAC2 underperforms oth-

ers since it is unable to trade off the amount of influence between the auxiliary

domains and the target domain. WITF lags slightly behind CDTF because WITF

uses an empirical suboptimal weights configuration in domains (cf. Section 6.3.3)

while CDTF uses a search procedure to find an optimal weights configuration by

genetic algorithm (GA) [83]. Note that WITF can also employ GA to search the

optimal configuration of weights. However, running a GA-based search procedure is

very time- and space-consuming because it is necessary to rerun the whole learning

algorithm under each possible configuration generated by GA. In comparison, WITF

uses a much more economical strategy to find a suboptimal weights configuration,

and the parameters learned from WITF are also learned by MAP using WRMF.

As a result, we obtained smaller RMSEs when the parameters learned from CDTF
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Table 6.2 : RMSEs of Comparison CDCF Methods on Epinions Dataset (− denotes

baseline, * means p < 0.01, ** denotes smallest p)

Target Domain
Kids & Family Hotels & Travel

TR-80% TR-50% TR-80% TR-50%

kNN-CDCF 1.2562 1.3016 1.1605 1.3338

PMF-CDCF 1.1719− 1.3547− 1.1260− 1.2925−

CMF 1.1312* 1.2908* 1.0805* 1.2457*

PARAFAC2 1.1102* 1.1458* 1.0647* 1.0891*

CDTF 1.0968* 1.1219* 1.0351* 1.0585*

WITF 1.1043* 1.1293* 1.0375* 1.0619*

WITF+WRMF 1.0563** 1.0835** 0.9983** 1.0284**

were finely tuned by WRMF. This proves the effectiveness of using the user, item

and domain factors learned from WITF as the informative priors for WRMF. Over-

all, WITF+WRMF is a more efficient and practical approach than all comparison

methods.

Moreover, we performed significance test by choosing PMF-CDCF as the baseline

to compare with another model through their paired prediction errors. In particu-

lar, we used the sign test [66] to measure if a comparison method can significantly

outperform the baseline with the p-value < 0.01 (marked with * in Table 6.2). In

particular, the smallest p-value is returned from the test on comparing the out-

puts between WITF-WRMF and baseline, i.e. WITF+WRMF achieves the most

significant improvement among all comparison methods.
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Table 6.3 : Statistics of Testing Users Grouped by the Number of Ratings

Target Domain # Ratings
# testing users in TS-50%

Kids & Family Hotels & Travel

Experienced > 20 120 55

Little Experienced 6 ∼ 20 816 517

Cold-Start 1 ∼ 5 2,260 2,807

Fully Cold-Start 0 695 1,072
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Figure 6.6 : RMSEs comparison over user groups with different number of ratings.

The Prediction Performance over Different Numbers of Training Rat-

ings

To evaluate the performance with different amounts of training data, we split

testing users into four groups according to the number of ratings they have in the

training set TR-50%. Table 6.3 shows statistics of these four groups in the target

domain Kids & Family and Hotels & Travel respectively. From the statistics, we

find that most users are cold-start, which follows the typical long-tail distribution

in the real world.
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Figure 6.6 depicts the comparable RMSE results over the four user groups in

the target domain Kids & Family and Hotels & Travel respectively. We find that

the performance on non-cold-start user groups (Experienced and Little Experienced)

between PMF and PMF-CDCF is close. This is because it is not necessary to borrow

much information from other domains when user feedback in the target domain is

relatively adequate, so the single domain PMF achieves comparable performance

with PMF-CDCF in this case. In comparison, the performance on cold-start user

groups of single-domain PMF is very poor because insufficient data is available to

learn user preferences. As analyzed in Section 3.1, PMF cannot deal with fully

cold-start users who do not have any data, so we only show the truncated RMSE for

PMF for the case of Fully Cold-Start. Obviously, CMF and PMF-CDCF lag well

behind TF-based methods, especially in the case of Fully Cold-Start. This is because

CMF and PMF-CDCF only model dyadic interaction between users and items so

they cannot model domain factors to represent heterogeneities among domains. As

a result, CMF and PMF-CDCF inevitably suffer from the blind transfer issue when

no data are available in the target domain, i.e. fully cold-start. In comparison, TF-

based methods are capable of representing the heterogeneities by domain factors and

therefore achieve more stable performance over all four user groups. In all TF-based

methods, PRAFAC2 underperforms all others due to the lack of a mechanism to

control influence between domains. WITF+WRMF achieves the best performance

in all cases. In particular, the fine-tuning procedure on WITF+WRMF leads to

apparent margins from WITF.

Adding Gaussian Noisy Examples for Regularization

As discussed in Section 6.4.2, adding Gaussian noisy examples acts as a regu-

larizer to avoid overfitting and improve generalization ability. The number of noisy

examples added for each user is controlled by the parameter S. Intuitively, too small
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Figure 6.7 : RMSEs comparison over different number of noisy examples for each

user.

S generates insufficient data to survive from overfitting while too large S not only

increases the time and space complexity but may overwhelm observed data. We

therefore evaluated the prediction performance over different settings of S in this

experiment. Apart from our WITF model, we also impose noisy examples to the

baseline methods, PMF-CDCF and CMF, as the regularization method to test if it

can improve their generalization ability.

Figure 6.7 illustrates the rating prediction performance in the target domain

Kids & Family using the training sets TR-80% and TR-50% respectively. From

Table 6.1, we easily find that the mean number of ratings over users is less than 4

with TR-80% and less than 2.5 with TR-50% in the target domain, and even fewer

in auxiliary domains. As analyzed in Section 6.4.2, the models become overfitting

even if we use a small number of latent factors. Here, we demonstrate the change in

RMSEs when 0, 10, 20, 50, 100 noisy examples are added. When no noisy examples

(S = 0) are imposed, the performance of all comparison methods is evidently poor

due to lack of regularization. When a small number of noisy examples (S = 10) are

added, the improvement is significant because overfitting is relieved (in this case,

the total number of real and virtual observations becomes larger than the number
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of parameters).

As expected, too much noisy examples may over-regularize the parameter learn-

ing. CMF achieves the best performance when 10 noisy examples are imposed,

whereas the performance drops when more noisy examples are added. Similar sit-

uation is observed w.r.t. PMF-CDCF. In comparison, WITF needs more noisy

examples to overcome overfitting since it has more model parameters than those of

CMF and PDF-CMF. For WITF and WITF-WRMF, the improvement in the case

of TR-80% is relatively small when S ≥ 20. In comparison, the improvement in

TR-50% is more apparent than that it is in TR-80% when S ≥ 20, since TR-50%

is sparser than TR-80% and needs more noisy data for regularization. In conclu-

sion, we only need to add a small number of noisy examples when training, which

is effective to improve the generalization ability.

6.5.4 Click Prediction on Tmall.com

Merchants usually need to personalize the layout of items to attract potential

buyers. It is well known that in the field of online advertising, customer targeting

is extremely challenging, especially for new buyers. By targeting these potential

customers, merchants can greatly reduce the cost of promotion and enhance the

return on investment. Unfortunately, the explicit feedback from buyers is usually

sparse and may not even be available for buyers in new domains. To alleviate this

problem, it is valuable for merchants to utilize implicit feedback, e.g., the user click

log recorded by the backend system. In this experiment, we use our models to solve

this problem with the click log accumulated by Tmall.com∗ which is the largest B2C

platforms in China.

∗http://www.tmall.com
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Table 6.4 : Statistics of Tmall.com Click-Log Dataset over Four Anonymous Do-

mains (* Each of these domains is chosen as the respective target domain for eval-

uation)

Domain #Items #Clicks/#Users #Clicks/#Items Sparsity

D1* 8,179 23.2003 19.717 0.0028

D2* 6,940 18.5455 18.5749 0.0027

D3 5,561 22.5005 28.1246 0.004

D4 6,145 16.0606 18.1671 0.0026

Data Preparation

The dataset provided by Tmall.com contains anonymized user click logs for six

months† covering 1,627 fine-grained anonymous domains, including clothes, furni-

ture, books, food, and so on. In this raw dataset, all domains are anonymized, so

we selected the four domains with the largest number of click records for evaluation,

and denoted them as D1, D2, D3 and D4. First, we extracted 7,000 users who

had at least 15 clicks in any two domains so that at least one focused domain for

each user was available to serve as the auxiliary domain. Then, we trimmed the

items accounting for fewer than 5 clicks. The statistics of this preprocessed dataset

for evaluation are illustrated in Table 6.4. In this experiment, D1 and D2 are re-

spectively chosen as the target domains for evaluation. For each target domain, we

applied the same strategy as the previous experiment to construct two training sets,

TR-80% and TR-50%, and used the withheld data as the testing sets TS-20%

and TS-50%.

†http://tianchi.aliyun.com/datalab/introduction.htm?id=1
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Table 6.5 : The Mean AP@5,10 and nDCG@5,10 on Tmall.com Dataset with D1 as

the target domain (− denotes baseline, * means p < 0.01, ** denotes smallest p)

Target

Domain

TR-80% TR-50%

AP@ nDCG@ AP@ nDCG@

5 20 5 20 5 20 5 20

MostPop 0.0161− 0.0175− 0.0269− 0.0382− 0.0322− 0.0223− 0.0567− 0.0577−

N-CDCF 0.0252* 0.0240* 0.0441* 0.0465* 0.0352* 0.021 0.0604* 0.0534

MF-IF 0.0263* 0.0293* 0.0432* 0.0631* 0.0455* 0.0324 0.0813* 0.0854*

MF-IF-CDCF 0.0242* 0.0258* 0.0399* 0.0552* 0.0431* 0.0296 0.0763* 0.0775*

PARAFAC2 0.0213* 0.0226* 0.0350* 0.0476* 0.0395* 0.0267 0.0691* 0.0687*

CDTF-IF 0.0258* 0.0276* 0.0425* 0.0587* 0.0423* 0.0294 0.0758* 0.0767*

WITF 0.0267* 0.0285* 0.0451* 0.0623* 0.0484* 0.034 0.0849* 0.0872*

WITF+WRMF0.0271** 0.0290** 0.0462** 0.0643** 0.0486** 0.0343** 0.0851** 0.0879**

Ranking Prediction Performance Comparison

In this experiment, we evaluated the prediction performance on clicks using the

metrics AP@5, AP@20, nDCG@5 and nDCG@20. Table 6.5 and 6.6 reports the

mean results with the sign test over all testing users on the target domain D1 and

D2 respectively. Predicting a new item from thousands of items that a user has never

clicked is a very difficult task, so the AP and nDCG of all comparison methods are

relatively low. We find that the overall results for TR-50% are higher than the

results for TR-80%. This is because 50% of the withheld data is used as the testing

set for TS-50% so the hit probability is naturally higher than it is for the 20% of

withheld testing data TS-20%.

The baseline method, MostPop, underperforms all comparison methods. This is

because popular items only account for a small proportion (a short head) and most

users have their personally preferred items in the long tail. Anderson’s well-known
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Table 6.6 : The Mean AP@5,10 and nDCG@5,10 on Tmall.com Dataset with D2 as

the target domain (− denotes baseline, * means p < 0.01, ** denotes smallest p)

Target

Domain

TR-80% TR-50%

AP@ nDCG@ AP@ nDCG@

5 20 5 20 5 20 5 20

MostPop 0.0175− 0.0194− 0.0288− 0.0424− 0.0297− 0.0231− 0.0530− 0.0591−

N-CDCF 0.0281* 0.0261* 0.0435* 0.0520* 0.0228 0.0243* 0.038 0.0357

MF-IF 0.0320* 0.0354* 0.0528* 0.0747* 0.0501* 0.0370* 0.0872** 0.0924**

MF-IF-CDCF 0.0240* 0.0262* 0.0397* 0.0563* 0.0380* 0.0285* 0.0675 0.0724*

PARAFAC2 0.0215* 0.0234* 0.0356* 0.0506* 0.0327* 0.0251* 0.0589* 0.0638*

CDTF-IF 0.0326* 0.0337* 0.0526* 0.0662* 0.0454* 0.0316* 0.0761* 0.0750*

WITF 0.0338* 0.0363* 0.0552* 0.0753* 0.0538* 0.0383* 0.0905* 0.0909*

WITF+WRMF0.0343** 0.0369** 0.0556** 0.0758** 0.0542** 0.0386** 0.0907** 0.0915*

research in economics proved this phenomenon, and Anderson [7] suggested that

future business would obtain more profit from long-tail selling. MostPop is unable

to find the personally preferred items in the long tail, which leads to the poorest

performance. N-CDCF also does not perform well, and the reason is similar to

MostPop, that is, the preferred long-tail items for each user are quite different, so

using neighbors’ clicked long-tail items as the prediction result deviates significantly

from users’ true preferences.

The single domain method, MF-IF, achieves relatively good performance because

it exploits both the clicked items and the unclicked ones for each user to models their

implicit preferences, i.e. the observed data as positive instances and unobserved data

as uncertainly negative instances. Thus, it not only resolves the unclassifiable issue

on unary (one-class) preference data [165] but also relieves the data sparsity issue

due to the small amount of observed data. Although MF-IF-CDCF also exploit the
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unobserved data, its results are worse than those of MF-IF, which can be mainly

attributed to the heterogeneities between domains. That is, much more data (both

observed and unobserved ones) from heterogeneous auxiliary domains overwhelm

the learning of user factors in the target domain. PARAFAC2 is based on binary

assumption which treats the unclicked items as true negative instances and assigns

too strong dislike weights to them. In addition, PARAFAC2 cannot control the

influence from auxiliary domains. These two deficiencies result in it even underper-

forming MF-IF-CDCF. In comparison, CDTF-IF surpasses MF-IF-CDTF since it

controls the mutual influence between domains. However, the design of CDTF-IF

is defective when assigning different confidence levels [83] on clicked and unclicked

items. In fact, the different confidence levels do not take effect when training the

model. In this chapter, WITF fixes this defect and we devise a more efficient algo-

rithm to learn the parameters, with the result that it outperforms CDTF-IF. After

fine-tuning, the model WITF+WRMF achieves a level of improvement over WITF.

The Impact of Confidence Parameter

Click records are typical unary preference data so we cannot directly differenti-

ate user preference levels over them. As presented in related work, both observed

data and unobserved data should be exploited to resolve this problem. In Section

6.3.3, the confidence parameter ck,i,j is introduced to emphasize the observed clicks.

Although ck,i,j can be tuned for each user and item respectively [82, 165], it is be-

yond the main topic of this chapter. In this experiment, we use a single confidence

parameter c for all domains [91] since we mainly focus on evaluating the impact of

c using different values.

We increase the value of c from 0 to 4 to evaluate the change of mean AP for

WITF. Figure 6.8 plots the change of performance in the target domain D1 and

D2 respectively. It degenerate to the case of binary preference data when c = 0 is
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Figure 6.8 : Mean APs over different values of confidence parameter c.

set, i.e. the weights on observed clicks (positive instances) and unobserved clicks

(negative instances) are the same. As presented previously, those unclicked items

in the training sets TR-80% and TR-50% do not necessarily indicate user dislike;

moreover, a part of truly observed clicks has been held out for testing. Therefore,

a lot of unclicks in these training sets are not true negative instances. Hence, it

is improper to learn model parameters under binary preference assumption. As

a result, we find that the left-hand plots and the right-hand ones in Figure 6.8,

c = 0 underperforms the other settings. When c is increased, we find that the

performance is improved. Specially, the best performance is achieved over TR-80%

when c is around 2 while the best performance is achieved over TR-50% when c is

around 3. It can be interpreted that the amount of observed clicks in TR-50% is

less than that in TR-80%, hence a larger c is required to emphasize these positive

instances in TR-50%. Intuitively, too large c on observed clicks will overwhelm the

information learned from unclicks. As expected, the performance drops when we

continue increasing c to a larger value.
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Table 6.7 : Statistics of Testing Users Grouped by the Number of Ratings

Target Domain # Clicks
# testing users in TS-50%

D1 D2

Experienced > 10 1,000 617

Cold-Start 1 ∼ 10 3,779 3,552

Recall over Different User Groups

The metric recall@k effectively assesses if a RS has successfully generated a

personalized item list for which a user has shown a positive preference. In this

experiment, we separated the testing users in the target domain into two groups,

namely the Cold-Start User Group where users had fewer than 10 clicks and the

Experienced User Group where users had clicked more than 10 items. Table 6.7

shows statistics of these two groups in the target domain D1 and D2 respectively.

We evaluated recall@5∼20 over all comparison methods and Figure 6.9 illustrates

the results. MostPop does not achieve a high recall and the margin between it and

other methods widens as K increases, which illustrates that users have different long-

tail items of interest apart from the most popular items. The performance of N-

CDCF is even worse than that of MostPop, especially for the Cold-Start User Group.

This is because the similarity of neighbors is computed from the data of all domains,

hence the neighbors are largely determined by the data in auxiliary domains when

a user is cold start in the target domain. However, user preferences in each domain

are quite different, and each neighbor of a user tends to have personally preferred

long-tail items in the target domain. Accordingly, the clicked items from neighbors

are quite varied, which makes the prediction from N-CDCF aimless. MF-IF-CDCF,

PARAFAC2 and CDTF-IF underperform MF-IF, for the reason explained in the
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Figure 6.9 : Recall@5∼20 of comparison methods on target domain D1 and D2.
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previous experiment, i.e. blindly borrowing the knowledge of user preferences from

other domains may even hurt preference learning from the target domain due to the

heterogeneities between domains. In comparison, as shown in all four subfigures of

Figure 6.9, the plots of WITF and WITF+WRMF are above those of other methods

with apparent margins. Therefore, we conclude that WITF provides an effective way

to model the unary preference data, such as clicks, over multiple domains, which

enables personal preferences for target domain items to be better captured by this

method than by other methods.

Training Time Comparison

Time cost is a critical problem for taking into account when a model is deployed

in a real-world production environment. In this chapter, we designed two strate-

gies to reduce the time cost: (1) a parallelizable parameter learning algorithm (cf.

Algorithm 1); (2) the trick to reduce time complexity (cf. Section 6.3.3).

We trained our models on a cluster with 12 Intel Xeon CPUs and 94G memory.

Our parallel parameter learning algorithm is implemented with MATLAB Parallel

Computing Toolbox. Table 6.8 illustrates the average time to run an iteration

under using different number of CPUs, where WITF (RAW) denotes the model

without taking the time complexity trick (cf. Section 6.3.3). Obviously, WITF

using the time complexity trick is almost twice faster than WITF (RAW), and such

improvement will be more significant when more items are involved in a real-world

production environment. The time cost reduces when more CPUs are used, which

proves the effectiveness of our parallel learning algorithm. The speed can be further

improved when the model is implemented with some industrial parallel technique

in a production environment. Moreover, the time cost of WRMF for post-learning

takes few seconds, and it only needs to be run a few iterations on the basis of the

well-estimated parameters from WITF.
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Table 6.8 : The average time (in seconds) to run an iteration

# CPUs 1 CPU 4 CPUs 8 CPUs 12 CPUs

WITF (RAW) 50.83 28.64 24.89 22.53

WITF 21.78 17.05 15.27 13.31

WRMF 2.91 2..26 1.87 1.58

6.5.5 Time Period as Domain on Movie Rating Prediction

Watching movies is one of the most frequent recreational activities. People usu-

ally see newly released movies because of a movie’s popularity or shared tastes with

friends, whereas they may watch old movies for nostalgia, or their relation to new

movies. That is, the attractiveness of new movies vs. old movies is quite different.

This suggests that movies should be grouped by different time periods to better

represent such heterogeneities. As shown in Figure 6.10, the movies in our experi-

ment are grouped into four slices from New to Old according to their release period.

This construction implies a cross-domain recommendation problem in which time

periods serve as domains. Therefore, we can apply our WITF methods to better

capture user preferences from the high-order interaction between users, movies and

time periods.

Data Preparation

In this experiment, we used the MovieLens20M dataset which contains the lat-

est movies released prior to 04/2015. We grouped the movies into four domains

according to their release date, as reported in Table 6.9. We removed those users

who had watched fewer than three new movies from the raw dataset so that we

extracted 5,726 users for evaluation. Table 6.9 summarizes the statistics for each

domain. In this experiment, we use New and Old as the respective target domains
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Table 6.9 : Statistics of the MovieLens Dataset over Different Release Time Periods

(* Each of these domains is chosen as the respective target domain for evaluation)

Domain Time Period #Movies # Ratings
# Users

# Ratings
# Movies

Sparsity

Old* ∼ 1979 6,750 98.8418 83.8471 0.0146

80s90s 1980 ∼ 1999 3,385 106.5423 180.2248 0.0315

2000s 2000 ∼ 2012 7,850 210.2548 153.3655 0.0268

New* 2013 ∼ 1,138 18.603 93.6037 0.0163

for evaluation. For each target domain, we create a training set TR-50% and a

testing set TS-50%, just as in previous experiments.

Rating Prediction Performance Comparison

Table 6.10 reports the MAEs and RMSEs on the target domain New and Old

respectively over all testing users. It is interesting to observe that the prediction

performance on the target domain Old is overall better than the performance on the
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Table 6.10 : MAEs and RMSEs of Comparison Methods on MovieLens Dataset (−

denotes baseline, * means p < 0.01, ** denotes smallest p)

Target Domain
New (TR-50%) Old (TR-50%)

MAE RMSE MAE RMSE

kNN-CDCF 0.8552 1.1107 1 1.0395

PMF 0.6758 0.9153 0.6277 0.8159

PMF-CDCF 0.5995− 0.8047− 0.5844− 0.7745−

CMF 0.5996 0.8111 0.5903 0.7891

PARAFAC2 0.6012 0.8069 0.5723* 0.7638*

CDTF 0.5986* 0.8087* 0.5655* 0.7572*

WITF 0.5978* 0.8043* 0.5622* 0.7510*

WITF+WRMF 0.5976** 0.8041** 0.5620** 0.7508**

target domain New. This phenomenon can be interpreted as follows. A user tends to

watch new movies due to the movie’s popularity, promotion and social relationships,

that is, the feedback on new movies is more or less influenced the opinions of others.

Old movies, by comparison, are no longer hot topics, so users tend to watch them

and give feedback only if they are personally really interested in these movies. The

randomness of feedback on new movies is therefore much higher than it is on old

movies, and this is why most approaches more easily capture the user preferences

on movies in the Old domain and consequently make better predictions.

From Table 6.10, we find that the margins between the different methods are rel-

atively small, and the improvement between the TF-based methods and MF-based

methods is not so obvious compared to the previous experiments. This is because all

the items in each domain are movies, so the heterogeneities are much smaller than
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in the previous experiments. As a result, the MF-based methods, e.g. PMF-CDCF,

do not suffer from significant heterogeneity issues when leveraging information from

auxiliary domains. Moreover, we find the apparent margins by comparing the per-

formance of PMF and PMF-CDCF in the New domain, which suggests that it is

helpful to incorporate more data to train models, since the available user feedback

within a small time period is relatively little. WITF-based models outperform the

other methods thanks to the sophisticated heterogeneity representation and influ-

ence control mechanism. Table 6.10 also reports the sign tests performed between

the baseline, i.e. PMF-CDCF, and other models. The results of comparison models

significantly outperform the results of baseline are marked with * (p-value ¡ 0.01).

The Amount of Influence from Auxiliary Domains

To determine how much amount of information to be leveraged from auxiliary

domains has a direct influence on prediction performance in the target domain. In

Section 6.3.3, we presented a way to trade off the influence between domains in

terms of setting the proportional parameter αk. In this experiment, we use WITF

to evaluate the rating prediction performance in the target domain New and Old

respectively by changing αk. We use only a single auxiliary domain to investigate

its influence on the target domain in each case.

Figure 6.11 depicts MAEs changing with the proportional parameter αk which

controls the influence of the auxiliary domains. The results show that performance

changes with the value of αk. In both cases, we find that the prediction performance

reaches its best point when a certain amount of influence is borrowed from auxiliary

domain. Either too large or too small αk may degenerate the performance.

From the left figure, i.e. the case of Old movies as the target domain, the best

αk is about 0.4 when New movies serves as the auxiliary domain, and the perfor-

mance gets worse when αk increases. In comparison, the best αk is around 0.8 when
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80s90s movies serves as the auxiliary domain. This proves that the user behavior on

watching new movies is quite different from watching old ones, so incorporating too

much influence from New movies domain may hurt the performance. Comparatively,

the time gap between Old movies and 80s90s movies is naturally smaller than that

between Old movies and New movies, so their heterogeneities are correspondingly

smaller. As a result, the target domain Old can incorporate more information from

80s90s auxiliary domain, i.e. a relative larger αk.

From the right figure, i.e. the case of New movies as the target domain, similar

phenomenon can be observed. The best αk is about 0.8 when Old movies serves as

the auxiliary domain whereas αk = 1 still does not reach the best point and we can

continue to set it a larger value when the auxiliary domain 2000s movies. Further-

more, we can find that the MAE using 2000s as the auxiliary domain is consistently

smaller than the MAE using either Old or 80s90s as the auxiliary. This proves that

the heterogeneities of user preferences between New movies and Old movies is rel-

ative larger than those between New and others. As a result, it is helpful to set a

smaller αk so as to control the knowledge learned from the domain of Old movies.

In comparison, the user preferences on 2000s movies are relatively closer to those on

the New movies, so a larger αk is preferred to transfer relatively more information
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learned from this auxiliary domain. Therefore, the optimal configuration of αk can

be used to quantify the degree of heterogeneity between target domain and auxiliary

domain.

6.6 Summary of Contributions

In this chapter, we model a CDRS with tensor factorization. In particular, the

non-IID technique is focused on modeling the heterogeneity and coupling relation-

ships between different item domains. The main contributions of this work are

summarized as follows:

• We analyze the deficiencies of current cross-domain recommendation methods

caused by the heterogeneities between domains. Specially, we address the

irregular triadic relation in CDCF, where each domain has different item set.

As a result, it becomes unfeasible to apply regular TF models. To deal with

this challenge, we design a weighted irregular tensor factorization (WITF)

model to couple the data among multiple heterogeneous domains.

• Explicit preference data, e.g., ratings, are not always available in many real-

world scenarios in RSs, while objective preference data, such as purchase his-

tory, browsing behavior, and click logs, are much more easily obtained. The

proposed learning algorithm for WITF can deal with both explicit preference

data and implicit preference data in a unified way.

• We propose a transfer learning method in terms of a Weighted regularized

matrix factorization (WRMF) model, where the user factors, item factors and

domain factors learned from WITF serve as informative cross-domain priors

to regularize latent factor learning in WRMF. These informative priors enable

WRMF to infer user preferences in cold-start domains.
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• We perform a collection of experiments on three real-world cases and make

comparisons with other state-of-the-art methods to test the effectiveness of

our approach. These are: (1) multi-category product recommendation in an

e-business site; (2) multi-category attractive item recommendation in a so-

cial networking site based on implicit feedback; (3) movie recommendation

over long time periods. All the evaluation results prove that our approach

significantly outperforms other comparison methods.
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Algorithm 1 Weighted Irregular Tensor Factorization

Input: Xk is the data matrix for each domain,

ωk is the influence weight for each domain,

wk,i,j is the weight on each entry,

λU , λV , λC are the regularization parameters

Output: U is the factor matrix for users,

C is the factor matrix for domains,

V, {Pk} are the factor matrices for items

Initialization

1: Ẅk,i,j ← ωkwk,i,j, V← I

2: Randomly initialize U, C

3: Pk ← ARB>R, with the SVD: X>k UΣkV
> ≈ ARΣRB>R

4: while Not convergence do

Add neighbor noisy examples (optional):

5: Randomly select S blank entries for each user i

6: Fill neighbor noisy examples in the selected entries

7: Generate tensor Y with the slice for each domain k: Yk ← (Ẅ ·∗ Xk)Pk

8: for iteration < m do

9: Update Ui,: in parallel for each user i using Eq. 6.26

10: Update Ck,: in parallel for each domain k using Eq. 6.27

11: Update V using Eq. 6.29

12: end for

13: for iteration < n do

14: Update Pk in parallel for each domain k using Eq. 6.23

15: end for

16: Return U,V,C, {Pk}

17: end while
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Chapter 7

A Session-based Recommender System for

Modeling the Intra- and Inter-sessions Context

7.1 Introduction

Most classic RSs do not consider the context of the current session. As a result,

these RSs may recommend quite irrelevant items to the current context. More-

over, these RSs tend to repeatedly recommend similar items to users due to the

relevance of historical choice. Factor models, such as MF [117], and neighborhood

methods, such as item-based collaborative filtering [193], are the two most prevalent

approaches in RSs. However, these two approaches are not immediately applicable

to session-based RS (SBRS) because they do not consider sequential relevance over

user choices. As a result, these RSs tend to produce homogeneous recommenda-

tions similar to their historical profiles or recent purchases as depicted in Figure 7.1

(a). In practice, users tend to have different requirements in the context of chang-

ing sessions; therefore, the homogeneous recommendation will greatly degrade user

satisfaction and business benefits. Recently, researchers have begun to incorporate

session context into RSs.

To capture relevance between items in a session, sequential pattern mining (SPM)

is a simple and straightforward approach [244]. SPM extracts a set of patterns

according to the co-occurrence frequency in the historical data. However, a session

context may consist of an arbitrary set of items in the recommendation problem so

it probably fails to match any pattern from the extracted pattern space. Moreover,

SPM can hardly capture the long-term relevance and the transition over multiple
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Figure 7.1 : The motivation of this work: (a) Classic recommendation without

considering session context; (b) Two sequences adding milk and bread into the cart;

(c) Rigid-order session vs. relaxed-order session; (d) First-order Markov chain model

vs. recurrent model; (e) Next item prediction based on both intra- and inter-session

contexts.

items. Markov chain (MC) is another straightforward way to model sequential

data [32]. However, MC only captures the first-order dependency, i.e., it predicts the

transition between a pair of items instead of that between an item and a contextual

item set. Neural models have achieved tremendous success in a number of tasks,

including RSs [247], with the development of deep learning. Recently, researchers

[76] have applied RNN for SBRS.

Both MC and RNN are originally applied on time series data in a natural order.

We argue that current SBRSs often assume a rigidly ordered sequence over data

which may not fit in many real-world cases. For example, the order in which toast,

milk, and ham are put into a shopping cart generally makes no difference in a real-

world transaction, as shown in Figure 7.1 (b). Moreover, most real-world datasets do

not provide precise timestamps on items purchased. Accordingly, we cannot obtain
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the true rigidly ordered sequences over these datasets. In this work, we relax this

assumption on the items in a session to allow an arbitrary order in a neighborhood

window as illustrated in the bottom of Figure 7.1 (c). Moreover, the next-item

recommendation depends on not only the current session context but historical

sessions. For example, a user has bought a smartphone in a recent session and they

do not tend to buy a new one in the next sessions in a short term. Therefore, we

propose cross-session filtering to jointly consider intra- and inter-session context for

the next-item recommendation.

If we regard a sequence of items for a session as a sequence of words in a sen-

tence, and a sequence of sessions for recent purchases as a sequence of sentences for

a paragraph, then we can borrow some successful experience in modern language

modelings. Especially, the word2vec models, which build context from the words in

a window without assuming a rigid order over the word sequence, inspire us to build

SBRS over relaxed-order sessions. As a result, we propose neural cross-session fil-

tering (NCSF) to conduct next-item recommendation under intra- and inter-context

in terms of a neural network model as illustrated in Figure 7.1 (e). The empirical

experiments on a real-world e-commerce dataset show the superiority of our model

over the state-of-the-art methods.

7.2 Problem Formulation

Before introducing the specificity of our model, we first formulate the problem

and clarify basic concepts.

In general, user set U = {u1, u2, · · · , u|U|} and item set V = {v1, v2, · · · , v|V|}

are two basic elements in RSs. As to SBRSs, S = {s1, s2, · · · , s|S|} denotes session

set containing all observed sessions, where each session consists of a collection of

items, si ∈ V |si|. Su = {su1 , su2 , · · · , su|Su|} denotes the session set w.r.t. user u, i.e.,

Su ⊂ S. Specially, we denote suT as a current session and suT−1 as the previous



164

v1

v1 v2 v3

Σ

sT-W

v2 v3

GRU

...

...

v1

v1 v2 v3

Σ

sT-W+1

v2 v3

GRU

...

...

v1

v1 v2 v3

Σ

s...

v2 v3

GRU

...

...

v1

v1 v2 v3

Σ

sT-1

v2 v3

GRU

...

...

v1

v1 v2 v3

Σ

sT

v2 v3

1-g

...

...

cT

g

v- v+ v-...

h...hT-W hT-2 hT

aaaaa

Historical Sessions Current Session

hT-1

Figure 7.2 : The architecture of NCSF. In the left part of split line, historical sessions

are used to build inter-session context. In the right part of split line, the items in

the current session are used to build intra-session context.

session. Given a target item vt ∈ suT , a context window with the size 2L is used

to include the relevant items before and after vt as the intra-session context, cuT,t =

{vt−L, · · · , vt−1, vt+1, · · · , vt+L}. Moreover, we incorporate user’s W previous ses-

sions w.r.t. suT as the inter-session context, namely cu〈T,W 〉 = {suT−1, s
u
T−2, · · · , suT−W}.

Then, the objective of NCSF is to train a classifier which maximizes the con-

ditional distribution P (vt|cuT,t, cu〈T,W 〉) with the intra-session context cuT,t and inter-

session context cu〈T,W 〉. Correspondingly, the next-item recommendation problem

is reduced to generate the ranking over all candidate items under the correspond-

ing intra- and inter-session context 〈cuT,t, cu〈T,W 〉〉. Thus, we can obtain the rank by

sorting the probabilities over all items, i.e., { P (v|cuT,t, cu〈T,W 〉)|∀v ∈ V)}.

7.3 Neural Cross-session Filtering

Figure 7.2 illustrates the architecture of NCSF, which trains a probabilistic

classifier to maximize the predictive probability on the most relevant item for a

given user session context cuT,t and its corresponding historical sessions cu〈T,W 〉 =

{suT−1, · · · , suT−W}. In brief, NCSF can be divided into three parts: (1) the histor-

ical session encoder as shown in the left part of Figure 7.2; (2) the current session
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encoder as shown in the lower right part of Figure 7.2 and (3) the joint intra- and

inter-session context encoder for item prediction as shown in the upper right part

of Figure 7.2.

7.3.1 Historical Session Encoding

Specifically, we first illustrate how to encode a historical session. Given a histor-

ical user session sut ∈ cu〈T,W 〉, the input of sut is all the items of this session. For each

item vi ∈ sut , it is mapped into an embedding, i.e., a continuous lower-dimension

vector, according to its ID, denoting ei ∈ RK . Thus, we can map all items in sut

into their embedding vectors {e1, · · · , e|sut |}.

Then, we need to encode these item embeddings into an high-level embedding

as the representation of this intra-session context. As illustrated in Eq. 7.1, we

construct this context embeddings st as a mixture of {e1, · · · , e|sut |}.

st =
∑
v∈sut

wvev (7.1)

where
∑

v wv = 1 is a normalized weight. Each wv signifies how informative of the

item in this session context. For example, Hu et al. [88] proposes a heuristic strategy

to assign weights. That is, the contextual items previous and next to the target item

vt, i.e., vt−1 and vt+1, have the largest weights, and those context items farther from

vt are assigned smaller weights.

However, above heuristic strategy implicitly assumes the order of items in the

context, which is often inconsistent with the real-world cases. Furthermore, the

closer item may not be the more informative item in the context. As a result, we

employ attention mechanism to learn the importance of each item in the context.

We use fh ∈ RK to denote the context filter over all item embeddings in the session

sut to learn their importance. Then, we compute the attention score wv in terms of
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a two-layer neural network.

av = tanh(fh>ev + b)

wv = softmax(av)

(7.2)

where softmax(av) = eav/
∑

i e
ai and b is the bias.

Then, we can obtain all historical session context embedings {sT−1, · · · , sT−W} as

above. To accumulate the influence from historical sessions, we input this historical

session context embedding sequence into a RNN with gated recurrent units (GRU)

[36].

ht = GRUθG(st,ht−1) (7.3)

where θG denotes the parameters of GRU. Each GRU cell takes session embedding

at time t and previous output ht−1 as the inputs, and then integrate these two inputs

into ht. At the final step of historical sessions, we obtain the output hT−1 which

stores the information of this historical session sequence.

7.3.2 Current Session Encoding

Given current user session suT , the items in the context window, cuT,t, play the

most important role in predicting the target item vt. To represent this context,

similar to encode historical sessions, we employ another two-layer network to learn

the attention over each item, v ∈ cuT,t, in terms of their embedding ev.

av = tanh(f g>ev + b)

wv = softmax(av)

(7.4)

where f g ∈ RK is the context filter.

Then, the context embedding is constructed as:

sT =
∑
v∈cuT,t

wvev

hT = tanh(sT )

(7.5)
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7.3.3 Intra- and Inter-session Context Encoding

So far, we have modeled the historical session context and current session context.

Since both of them contribute to the next item prediction, we need to integrate them

into a joint context embedding. However, what information should be preserved from

the historical session context is uncertain. Therefore, we design a gate vector, g, to

filter the information from historical session context embedding hT−1 and current

session context embedding hT .

We employ a two-layer neural network to compute the gate vector g, which takes

hT−1 and hT as the inputs to learn how to integrate these two context information.

g = σ(Wg[hT−1; hT ] + b) (7.6)

where σ(x) = 1/(1+e−x) is a sigmoid function and Wg ∈ RK×2K is a weight matrix.

Then, we can integrate hT−1 and hT into a joint context embedding cT in terms of

g,

cT = g ∗ hT−1 + (1− g) ∗ hT (7.7)

where ∗ denotes element-wise product.

7.3.4 Objective Function

Given the joint intra- and inter-session context embedding cT , we can compute

the score Svt of the target item vt in terms of the context embeddings 〈hu,hc〉:

S(vt|cT ) = WS
t,:hc (7.8)

where WS
t,: denotes the t-th row of WS ∈ R|V|×K . This score function quantifies the

compatibility of the target item vt with the joint session context. As a result, the

conditional distribution PΘ(vt|cT ) can be defined in terms of a softmax function.

PΘ(vt|cT ) =
exp(S(vt|cT ))

Z(V|cT )
(7.9)
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where Z(V|cT ) =
∑

v∈V exp(S(v|cT )) is the normalizing constant and Θ defines

the model parameter set Θ = {{ei}, θG, fh, f g,Wg,WS}. As a result, we obtain a

probabilistic classifier for NCSF.

Given D = {〈cu〈T,W 〉, cuT,t〉|u ∈ U , suT ∈ Su, cuT,t ⊂ suT} as all possible user current

session context and historical session context as the training dataset, we easily obtain

the joint probability distribution over it:

PΘ(D) ∝
∏

〈cu〈T,W 〉,c
u
T,t〉∈D

PΘ(vt|cu〈T,W 〉, cuT,t) (7.10)

Therefore, we can learn the model parameters Θ by maximizing the conditional

log-likelihood (cf. Eq. 7.9):

LΘ =
∑

〈cu〈T,W 〉,c
u
T,t〉∈D

logPΘ(vc|cu〈T,W 〉, cuT,t〉)

=
∑

〈cu〈T,W 〉,c
u
T,t〉∈D

S(vt|cT )− logZ(V|cT )

(7.11)

7.3.5 Learning and Prediction

Both evaluating LΘ and computing the corresponding log-likelihood gradient

involves the normalizing term Z(V|cT , which needs to sum exp(S(v|cT )) over the

entire item set for each training example, cf. Eq. 7.9. This means that training

this model needs to take time |V| × |D| to compute the normalizing constants over

all the training examples for each iteration. Unfortunately, |V| and |D| are always

large in real RSs, which makes the training process intractable.

The vocabulary size in NLP systems is also large so language modeling runs

into similar challenge for next word prediction [153]. In this chapter, we adopt a

subsampling approach, i.e., negative sampling, to approximate the softmax compu-

tation over all items. More specifically, we randomly draw a small set of items as

the N noise samples {v−1 , · · · , v−N} w.r.t. the true target item vt, where N � |V|
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denotes the number of noise samples. Accordingly, we approximate the softmax for

the target item (cf. Eq.7.9) as follows:

PΘ(vt|cT ) =
exp(S(vt|cT ))

Z(Ṽ|cT )
(7.12)

where Ṽ = {vt, v−1 , · · · , v−N}.

To learn the parameters, we adopt a gradient-based algorithm over ∂LΘ/∂θ

w.r.t. each parameter θ ∈ Θ. We implement our model by using Keras [37] with

Tensorflow GPU version as backend. We use Adam [111] as the gradient optimizer

and the mini-batch size is set to 200.

When the model has been trained, we can immediately use it for next item

recommendation. Given a user current session context and his/her historical session

context, we can compute the scores over all candidate items according to Eq. 7.8,

and then rank them accordingly.

7.4 Empirical Study

For empirical evaluation, we use the IJCAI-15 competition dataset∗ which is

a real-world dataset collected from Tmall.com. Tmall is the largest online B2C

platform in China, and it contains anonymized user shopping logs for the six months

before and on the “Double 11” day (11th November).

7.4.1 Data Preparation

The raw dataset contains 600,357 users and 372,740 items. Note that this dataset

only provides buying date without a specific time, so we treat a user’s shopping

records in a natural day as a session. For intra-day sequence, we retain the order

given in the raw data. First, we remove items which were bought less than ten

times and those users who have less than three shopping sessions. Then, we remove

∗https://tianchi.shuju.aliyun.com/datalab/dataSet.htm?id=1
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Table 7.1 : Statistic of IJCAI-15 dataset for evaluation

# users: 50,197

# items: 52,206

# item/# session: 3

# training sessions: 195,866

# training examples: 399,394

# testing cases (LAST ): 4,423

# testing cases (LOO): 11,852

all singleton sessions, i.e., only containing one item, from the raw data. From the

six-month shopping logs, we randomly hold out 20% of the sessions from the last

30 days for testing, and the remaining data is used for training. In particular, we

construct two testing sets: LAST means that the last item in each testing session is

used as ground truth, and LOO means each item in a testing session was held out,

in turn, to serve as ground truth, i.e., leave-one-out. The statistics of this dataset

for evaluation are summarized in Table 7.1.

7.4.2 Comparison Methods

For conducting an empirical study, we compare the representative state-of-the-

art methods introduced in Section 3.5 with the following settings:

• MostPop: This is a simple recommendation method to rank items for rec-

ommendation according to occurrence frequency without considering session

context.

• FPMC : It combines MF and first-order MC as an SBRS, which uses person-

alized MC for sequential prediction.
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Table 7.2 : The evaluation results for MRR and AUC

LAST

Model MRR@10 MRR@20 MRR@50 AUC

MostPop 0.0077 0.0086 0.0092 0.8170

FPMC 0.1482 0.1516 0.1537 0.8075

GRU4Rec 0.2601 0.2654 0.2676 0.8756

SWIWO 0.4038 0.4071 0.4084 0.9126

NCSF 0.4403 0.4440 0.4457 0.9407

LOO

Model MRR@10 MRR@20 MRR@50 AUC

MostPop 0.0089 0.0102 0.0109 0.8269

FPMC 0.1611 0.1649 0.1666 0.8211

GRU4Rec 0.2494 0.2556 0.2584 0.8890

SWIWO 0.4211 0.4242 0.4258 0.9163

NCSF 0.4403 0.4440 0.4457 0.9407

• GRU4Rec: This SBRS consists of a deep RNN with the GRU cells.

• SWIWO : This is relaxed-order intra-session context model with a shallow

network architecture.

• NCSF : This is the model proposed in this chapter considering both intra- and

inter-session context.

Results

Table 7.2 demonstrates the results of MRR@10, MRR@20, MRR@50 and AUC

over the testing sets Last and LOO. From Table 7.1, we find the number of candidate
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items is above 50,000, so it is a big challenge to predict the true next item. MostPop

achieves reasonable results, which reflects common user behavior for online shopping,

that is, users tend to choose items with high sales volume, i.e., popularity, but

users will not always buy the same popular items because they have quite different

requirement in the different context. We set the number of latent factors to 20 for

training FPMC, and the results become worse when more factors are used. This is

because the dataset is very sparse for MF methods where each row only contains

less than two items (cf. the avg. session length in Table 7.1, note that one of the

items needs to be used as the output) and the others are all empty (cf. # items in

Table 7.1). Furthermore, most users only have three sessions although we remove

users with too few sessions. Therefore, this constructs a very sparse matrix to train

the MF model. Moreover, FPMC employs a first-order MC to learn the transitions

over successive items. We set the item embedding size as 100 for GRU4Rec. The

structure of GRU enables GRU4Rec to accumulate the long-step influence from

relatively early selections, which results in a qualitative leap. We can find that the

MRRs of GRU4Rec are above 0.25 in both testing cases.

We set 100 units for the item embeddings when training the SWIWO model. We

find that SWIWO outperforms GRU4Rec by clear margins, where the MRR is above

0.4 and the AUC is above 0.91 for both testing cases. The highest MRR also proves

that SWIWO can accurately list user-desired items on the first page. Moreover,

SWISO has a shallow structure, which makes it efficient to recompute the scores

over all candidate items when many session contexts keep updating in online SBRSs.

When training the NCSF model, we set 100 units for the item embeddings, window

size 4 for modeling the intra-context and two historical sessions as the inter-session

context. From the results, we find that NCSF outperforms SWIWO in MRRs by

5% and AUC by 3% because NCSF incorporates the inter-session context as well

as the intra-session context. Another important cause leads SWIWO and NCSF to
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Figure 7.3 : REC@5 - REC@50 on test cases LAST and LOO

better performance than GRU4Rec is that SWIWO and NCSF apply a relaxed-order

session context modeling strategy which builds a more reasonable session context

to predict the next item selection. Furthermore, NCSF incorporates the attention

mechanism to build both the intra-session context and inter-session context, which

is advanced to the context building heuristic strategy applied by SWIWO.

Figure 7.3 depicts the recall of all comparison methods. Here, we chose K ∈

[5, 50] because most users are only interested in viewing the recommendation on

the first few pages in the real-world scenario. We find that the plots of NCFS and

SWIWO are above the plots of baselines with apparent margins, i.e., NCFS and

SWIWO can more accurately retrieve the next items for each user in top positions.

NCFS combines the information from both the current session context and the

historical session context, which leads to the best recall.

7.4.3 Diversity Evaluation

People have realized the harmfulness of evaluating RSs only using accuracy

metrics [54]. Recall that we propose to diversify recommendation for different

user-session context to replace similarity-based recommendation over history pro-

file. Therefore, we respectively evaluate our model and other comparison methods
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Table 7.3 : The evaluation results for diversity

LAST

MostPop FPMC GRU4Rec SWIWO NCSF

DIV@10 0 0.9234 0.9977 0.9978 0.9980

LOO

MostPop FPMC GRU4Rec SWIWO NCSF

DIV@10 0 0.9616 0.9982 0.9983 0.9983

from the perspectives of accuracy and diversity, but they often cannot be optimized

simultaneously [251]. Since we aim to diversify recommendation under different

contexts, we use the evaluation metrics defined in Section 3.4.3.

Results

Table 7.3 demonstrates the diversity of the top-10 recommendations over testing

sets Last and LOO. MostPop always recommends the same items for all sessions

so it has zero diversity. FPMC is a first-order MC model which does not consider

the long influence of early choices. Accordingly, we get relatively low diversity for

FPMC compared with GRU4Rec, SWIWO, and NCSF. GRU4Rec, SWIWO, and

NCSF take all the items in the session context into account, therefore they all

generate very high diversity recommendations under different session context.

Figure 7.4 illustrates F1MRR−DIV @10 and F1REC−DIV @10 testing sets Last and

LOO to jointly consider accuracy and diversity. Although GRU4Rec achieves very

close diversity to SWIWO and NCSF, its accuracy performance, i.e., MRR@10 and

REC@10 shown in Table 7.2, are lower than those of SWIWO and NCSF. Accord-

ingly, GRU4Rec achieves lower F1 scores than SWIWO and NCSF. In particular,

from Figure 7.4, we find that NCSF achieves higher F1 scores than those generated
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by SWIWO. This is because NCSF takes the influence from historical sessions into

account, which makes the recommendations based on more considerable and diverse

contexts. In comparison, SWIWO does not model historical sessions and it applies a

heuristic strategy to model the intra-session context. As a result, we conclude that

NCSF is the best model to serve for real-world SBRSs, jointly considering accuracy

and diversity.

7.5 Summary of Contributions

In this chapter, we model a session-based recommender system with RNN and

attention mechanism. In particular, the non-IID technique is focused on modeling

the coupling relationships of items within a session and between sessions. Our main

contributions are summarized as follows:

• We analyze the deficiencies of recommendation in classic RSs without consid-

ering session context and SBRSs with rigid order assumption. Accordingly,

we relax this assumption on the items in a session to allow an arbitrary order

in a neighborhood window.

• We devise a neural cross-session filtering (NCSF) framework which jointly

models the coupling relationships within the intra-session context and between

the inter-session context when recommending the next item.

• The empirical evaluation conducted on the real-world e-commerce dataset

proves the comprehensive superiority of our approach over all other state-

of-the-art methods.
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Part IV

Non-IID RS: Modeling

Non-IIDness on Interactions
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Chapter 8

A Multi-objective Recommender System for

Modeling Specialty and Credibility for Long-tail

Recommendation

8.1 Introduction

We are leaving the information age and entering the recommendation age [7].

Because of this, RSs are playing an increasingly important role than ever before.

CF is a core component of modern RSs; it leverages feedback from other users and

items to generate recommendations for a target user. However, CF techniques are

still challenged by complicated real-world data characteristics. On the one hand,

some of the challenges arise from the distribution of real-world data in nature. It

is known that a lot of real-world data can be observed following a long-tail, a.k.a.,

power-law distribution, as discussed in Section 1.2. Due to a lack of sufficient data

for most users and items, data sparsity and cold start are two of the most common

research issues addressed by the study of RSs. On the other hand, other challenges

may be caused by human behavior. For instance, shilling attack is one such typical

issue as presented in Section 1.2. Since the basic idea of CF is to predict ratings in

terms of the related data associated with other users and items, insufficient data and

spam data will obviously deteriorate recommendation results, especially for those

users and items in the tail of distribution.

To date, most research has focused on improving the accuracy of RSs. However,

simply improving the accuracy by one or two percent will hardly result in a better

user experience or a greater business benefit. Here, we give an intuitive interpre-
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tation from the long-tail distribution. A long-tail distribution implies skewed data

that has a short head and a long tail, that is, a small number of popular items in the

head part, which account for most of the data, whereas the large number of items

in the tail only account for a small amount of data. Here, we use the experimental

Rich Epinions Dataset (RED) [151] as a demonstration. This dataset was crawled

from the well-known online review Web site epinions.com, which contains a total of

1,127,673 reviews given by 113,629 users on 317,755 items. Each review contains a

user rating, and the density of this dataset is only 0.003%. The left- and right-hand

sides of Figure 8.2 depict, respectively, the long-tail distribution for items and for

users. We find that only a few items and users in the short head have sufficient

ratings while a large number of items and users in the long tail have less than ten

ratings each. Such a skewed data distribution causes RSs to learn users’ preferences

largely from popular items because these items account for the majority of the data.

As a result, the improvement of recommendations is largely determined by popular

items. However, such improvement for popular items is trivial because popular items

are likely already known by most users who can make the decision to choose them or

not. Moreover, Anderson’s well-known research suggests that future businesses will

obtain more profit from long-tail selling [7]. Motivated by these observations, we

focus on improving the quality of recommendations for tail users and items, which

we believe will be a great benefit for both business profits and the user’s experience.

8.1.1 Challenges of Tail Users and Items

In recent years, a lot of CF techniques have been developed [206], where kNN [26]

and MF [117] are two examples. In Chapter 3, we have briefly reviewed the kNN

and MF models. Due to the skewness of the distributions of the users and items

(cf. Figure 8.1), the data pulled from long-tail users and items is much sparser than

that of short-head users and items. As a result, the kNN and MF models are more
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Figure 8.1 : Items (left) and users (right) are ranked by the number of their ratings

(truncated from 0 to 100) on Rich Epinions Dataset; they are both clearly distributed

with short heads and long tails.

vulnerable to the following challenges than long-tail users and items.

Popularity Bias: Given any two users, their choices tend to overlap more with

popular items but less so with long-tail items. Hence, the neighbor set in kNN is

largely constructed from popular items. Furthermore, note that the data is very

sparse in the tail, i.e., each tail item is chosen by very few users. As a result,

a user often cannot find any feedback on those long-tail items from neighbors, so

a prediction is unavailable (cf. Eq. 3.1), which creates a situation where those

items will never be recommended. As for popular items, they tend to have sufficient

feedback, so kNN can more easily make predictions and recommend them. Although

MF does not directly depend on neighbor data, it still suffers from the tail’s data-

sparsity challenge. From Eq. 3.6 and Eq. 3.7, we find that the estimates of item

factors and user-factors are largely determined by the amount of observed data w.r.t.

item j and user i. For items and users in the tail, the amount of observable data

is small, so the quality of the estimates for them are naturally poorer than with

short-head items and users. Accordingly, the predictions for short-head items and

users are much more accurate than those for long-tail items and users.

Cold Start: The long-tail distribution implies a number of users are cold start

in nature. Cold-start users usually have provided little feedback on some popular
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items, or sometimes no feedback at all. Given a cold-start user, kNN does not have

sufficient data to find suitable neighbors. As a result, the prediction results for long-

tail items or users is poor. From Eq. 3.7, we find that the factors, Ui, differentiate

user preferences according to the feedback they have provided on different items.

However, long-tail users have provided very little feedback on popular items so the

learned factors of these users tend to be similar; for this reason, they are not able to

clearly represent personal preferences. In extreme cases, we find that neither kNN

nor MF can work, cf. Eq. 3.1 and 3.7, when we have only cold-start users without

any feedback data.

Shilling Attack: As mentioned, a shilling attack refers to a group of spam users

intentionally providing fake feedback, e.g., much higher or lower ratings than a true

rating to bias the ratings and the recommendations for them. Intuitively, short-head

items are well known, and users either actively or passively learn information about

them from many sources. For this reason, short-head items are less affected by

shilling attack. In comparison, information on unpopular items is limited, and they

are largely known by recommendations. Thus, these items can suffer more easily

from shilling attack. Moreover, the number of ratings on head items is much more

than on tail items; as a result, it is much easier to attack tail items by imputing

a few fake ratings. For example, given a head item that has 1,000 ratings and a

tail item that has 5 ratings, and where both have an average score of 4, if a shilling

attack gives five low ratings with a score of 1 on both items, the average rating of

this head item is still close to 4, but the average rating of the tail item is reduced

to 2.5.

Since kNN depends on neighbors’ feedback to construct a prediction, it can suffer

greatly from shilling attack on tail items due to the large proportion of fake feedback.

As for the MF method, each item factor vector, Vj, determines how this item would

be preferred by users. If a shilling attack is conducted on a tail item j, Vj is learned
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largely only from fake feedback (cf. Eq. 3.6). As a result, the prediction for a user’s

preference for item j is biased by the fake Vj.

8.1.2 Optimizing Specialty and Credibility

Users’ choices for popular items are largely influenced by others. For example,

seeing a new movie with friends may not really reflect a particular user’s subjective

preference. On the other hand, choices for long-tail items can better reflect a user’s

taste since they are rarely due to the influence of others. To tackle the popularity-

bias challenge, we need to construct a model that can emphasize the choices of long-

tail items in order to learn users’ special preferences. However, only emphasizing

long-tail items is not enough because, as mentioned, long-tail items suffer more

easily from shilling attack. Therefore, we also need to construct a model that can

weigh the credibility of each piece of feedback. Moreover, an efficient way to deal

with the cold-start challenge is to borrow information from other relevant users. We

argue that high-quality, relevant users should be reputable and, thus, trusted. In

summary, we need to design an approach that jointly models both the objective to

emphasize the Specialty of choices and the objective to assess the Credibility of the

feedback for each choice.

Heteroscedastic Matrix Factorization: In Eq. 3.3, the variance parameter,

σ2, does not vary with different observations Yij, which is so-called “homoscedastic-

ity”. Now, if we model each observation Yij with different variance, σ2
ij, as demon-

strated in Eq. 8.1, then these observations are assumed to be “heteroscedastic”. By

minimizing the negative log-form of Eq. 3.4, we immediately obtain the following

objective (Eq. 8.2) where the weighted squared loss wij(Yij−U>i Vj)
2 is the log-form

of Eq. 8.1 and wij = σ−2
ij serves as the weight to penalize the loss of fitting Yij. As a

result, we call this variant MF model heteroscedastic MF (HMF). From a probabilis-

tic view, the variance parameter σ2
ij controls the confidence level [82]. Specifically,
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a smaller σ2
ij implies higher confidence and less uncertainty of the observation Yij,

i.e. a large wij is applied to more tightly fitting Yij.

P (Yij|Ui,Vj) = N (Yij|U>Vj, σ
2
ij) (8.1)

J = argmin
U,V

1

2


∑
ij

wij(Yij −U>i Vj)
2

︸ ︷︷ ︸
weight loss

+λ(‖U‖2
F + ‖V‖2

F )

 (8.2)

Heteroscedastic Modeling: In order to emphasize the specialty of users’

choices with long-tail items, we differentiate each user choice in terms of heteroscedas-

tic modeling. Specifically, we model the variance parameter σ2
ij by a variance func-

tion fS(·) to score the specialty of this choice. As a result, we obtain specialty-specific

heteroscedastic MF (S-HMF), which more tightly fits the users’ choices for long-tail

items.

On the other hand, we need to model the credibility of users’ feedback. Tech-

nically, the parameters should be estimated by tightly fitting the more credible

feedback while loosely fitting the less credible feedback. Hence, we can construct

another HMF model using Eq. 8.1, where the variance parameter σ2
ij is modeled by

a variance function fC(·), which scores the credibility of each review. We name this

type of HMF as credibility-specific HMF (C-HMF).

Coupling Objectives using Empirical Priors: So far, we have presented S-

HMF and C-HMF, which correspond to two independent objectives for optimization.

However, we need to jointly consider both objectives w.r.t. specialty and credibility

when learning user preference as stated previously. From the view of Bayesian

modeling, MAP trades off the estimation of parameters between prior and likelihood.

That is, the estimates are very close to the given prior when little data is available.

In PMF, the priors of user factors and item factors are modeled by uninformative

priors, i.e. zero-means as illustrated by Eq. 3.2. If we provide some informative
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priors, µi and µj , pertaining to the user factors and the items factors as Eq. (10),

then we obtain the objective function illustrated by Eq. (11). In this objective, we

find that the estimates of Ui and Vj are regularized by the given priorsµi and µj .

As a result, the estimates of user factors and items factors tend to shrink towards

the given informative priors.

P (Ui) = N (Ui|µU , σ2
UI) P (Vi) = N (Vj|µV , σ2

vI) (8.3)

J = argmin
U,V

1

2

∑ij
wij(Yij −U>i Vj)

2︸ ︷︷ ︸
weight loss

+λ(‖U− µi‖2
F + ‖V − µj‖2

F )︸ ︷︷ ︸
regularization

 (8.4)

The user factors and the item-factors learned from C-HMF target the objective

of credibility, so they can serve as good empirical priors for modeling the user factors

and the item factors of S-HMF. Symmetrically, the user factors and the item factors

learned from S-HMF target the objective of specialty, which contains information

on the users’ intrinsic preferences. As a result, the user factors and the item fac-

tors learned from S-HMF are good empirical priors for modeling the user factors

and the item factors of C-HMF. Thus, as shown in Figure 8.2, it forms a mutual

regularization process that couples S-HMF and C-HMF using the empirical priors

learned from each other recurrently. Therefore, we name this coupled model for

multi-objective optimization the RMRM.

Moreover, we need to borrow information from other users’ preferences to deal

with cold-start users. Since user factors represent the features of user preference, we

can construct the prior using user factors from a group of relevant users. Specifically,

we design a sophisticated way to combine these Gaussian-distributed user factor

vectors, namely, by using the product of Gaussian experts (PoGE) [77,231]. In fact,

such a PoGE-prior can be regarded as playing the role of social regularization [141].

This will be discussed further in the following sections.
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Figure 8.2 : A recurrent mutual regularization process couples S-HMF and C-HMF

using the user and item-factors learned from one another as the empirical priors to

couple the objectives specialty and credibility

8.2 Preliminaries

Before commencing a detailed discussion, we summarize the frequently used

notations used in this chapter and their meanings in Table 8.1 to simplify the pre-

sentation in the rest of the chapter.

8.2.1 Reputation Modeling

One of the key components in our approach is modeling the reputation of users

and the credibility of their feedback. Intuitively, the reviews from high-reputation

users tend to be more trusted and helpful to other users, and thus, they more credibly

discuss the real features of items. In other words, the reputation of a user is highly

relevant to the credibility of her feedback. Bayesian reputation systems [105] have

been proposed to model reputation from a probabilistic perspective, so this can be

integrated easily into our framework. In particular, in this work, we employ the

beta reputation model [103] to obtain the helpfulness scores for user reviews.
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Table 8.1 : Summary of frequently used notations in this chapter

Symbol Description

i i ∈ {1, · · · , N} is used to index a user

j j ∈ {1, · · · ,M} is used to index an item

Ui U = [U1, · · ·UN ] is the user factor matrix, where Ui is the user factor vector of user i

Vj V = [V1, · · ·VM ] is the item factor matrix, where Vj is the item factor vector of item j

Yij Y is the data matrix, and Yij ∈ Y is an entry with the index (i, j)

Oi O is the index set of all modeled data points, Oi is the index set of data w.r.t. user i

Oj Oi is the index set of data w.r.t. item j

σ2
ij is the variance parameter of observation Yij

µi µi is the empirical prior placed on the user factors Ui

µj µi is the empirical prior placed on the item factors Vj

wij W is the weight matrix, and wij ∈W is the weight to scale the loss of fitting Yij

φi φi is the reputation score of user i

ωij ωij is the credibility score on a user review

ηij ηij is the specialty score on a user choice

N k
i N k

i is the top-K neighbors of user i

NR NR denotes the top-R high-reputation experts in the system

·S Superscript to indicate S-HMF related model parameters

·C Superscript to indicate C-HMF related model parameters

‖x‖2 The 2-norm of a vector

diag(x) Generate a diagonal matrix using a vector

PoGE Product of Gaussian experts

·∗ Element-wise product

·2 Element-wise square

·−1 Element-wise inverse
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Beta Reputation Model

Let e
def
= {r, s} denote the evidence that contains r positive feedback and s

negative feedback w.r.t. a target entity. The probability of evidence e can be

described by a group of Bernoulli events, which follows a binomial distribution:

P (e|p) =

(
r + s

r

)
pr(1− p)s (8.5)

Then, we can obtain the following definition of a reputation function given the

beta-prior with the probability density function (pdf) defined by a gamma function

Γ(·):

Beta(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (8.6)

Definition 8.1: (Reputation Function) [103]

ϕ
def
=

∫
P (e|p)Beta(p|α, β)dp = Beta(r + α, s+ β). (8.7)

Obviously, the reputation function is defined as the posterior of the beta distribution,

where the hyperparameters α and β can be thought of as a certain amount of pseudo

positive and negative feedback; in practice, this is often set α = β = 1. Next, we can

obtain the expectation of this reputation function, i.e., the mean of Beta(r+α, s+β):

ϕ
def
= E[ϕ(e)] =

r + α

r + α + s+ β
(8.8)

We find that R(e) is bounded within (0,1), and that it approaches the upper bound

1 only if the user has a large amount of positive feedback. Clearly, we can employ

such a beta reputation model to assess the reputation of a user by the score R(e)

in RSs.

Data for Modeling Reputation

For most online shopping and review Web sites, a user’s review of an item consists

of a rating and a free message. In order to find helpful reviews and to display them
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Figure 8.3 : The screen snapshots of reviews from Amazon.com (left) and Ciao.com

(right), where the red, dotted boxes show the helpfulness score.

on the first page, some of the most well-known Web sites, e.g., Amazon.com∗, Epin-

ions.com† , Ciao.com‡, have designed a scoring system to evaluate the helpfulness

of each review.

Figure 8.3 demonstrates two screen snapshots of reviews found on Amazon.com

and Ciao.com. These Web sites have integrated several algorithms to score the help-

fulness of each review in terms of other users’ feedback or experts’ judgments of this

review. As a result, each review is generally associated with a multilevel helpfulness

score, from Not Helpful to Most Helpful, as shown in Figure 8.3. Obviously, we can

employ the beta reputation model to assess the reputation of each user: if a user

gives a lot of reviews that mostly receive high helpfulness scores, then this user tends

to be a high-reputation user. On the contrary, the reputation score will be low if

a spam user gives a lot of fake reviews. The mathematical representation of the

reputation score will be discussed along with our model in the following subsections.

∗http://www.amazon.com

†http://www.epinions.com

‡http://www.ciao.com
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8.2.2 Explicit and Implicit Rating

Rating data is typical feedback that represents the preferences of users. Typi-

cally, rating data can be divided into two categories: explicit and implicit.

Explicit Rating: The multilevel rating scores, e.g., five-star ratings, can explic-

itly differentiate user preferences, so they are typical explicit rating data. Therefore,

we only model observed ratings, while the remaining entries are treated as missing.

From the HMF view, we have no information on these missing entries to tell us

whether users have liked the items or not, so we assign positive confidence, cij > 0,

to the observed ratings and zeros to the remaining ones.

wij =


cij (i, j) indexes an observation

0 otherwise

(8.9)

If we set all cij = 1, then we obtain a binary-weight matrix w [2,204]. Using this

w in Eq. 8.9, we can immediately obtain the traditional unweighted MF objective,

as shown in Eq. 3.5, from the objective of HMF. In this case, the index set O =

{(i, j)|wij > 0} only consists of observed entries.

Implicit Rating: In the real world, explicit ratings are not always provided by

users, but implicit rating data, such as purchase records and number of clicks, can

be obtained more easily. This implicit rating data is usually modeled as a unary

preference because the blank entries do not necessarily indicate user dislike, but,

instead, are a result of the users’ lack of awareness [75]. Hence, we can assign a

higher confidence level to observed entries and a much lower confidence level to

blank entries [82,91]. Recall that the confidence level is associated with the variance

parameter, i.e., the inverse of weight (cf. Eq. 8.9), when a Gaussian distribution

is assumed. As a result, the weighting strategy [91, 165] of implicit ratings is often
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established as follows:

wij =


cij (i, j) indexes an observation

ε otherwise

(8.10)

where ε is a small constant to denote the low confidence representing users’ likes or

dislikes for blank entries while cij > ε denotes relatively higher confidence represent-

ing users’ likes of observed entries. In this case, we need to model both likes and

dislikes so the index set O consists of all entries of the data matrix.

8.3 Model and Learning

8.3.1 Overview of RMRM

To implement more reliable recommendations for tail users and tail items, we

propose to model two coupled objectives for joint optimization, namely, the specialty

of user choices and the credibility of user feedback. To achieve this goal, we design

a recurrent mutual regularization model (RMRM) to couple these two objectives

together.

The Framework

As illustrated in Figure 8.4, the objective of specialty is modeled by S-HMF

(the right model shown in Figure 4) while the objective of credibility is modeled by

C-HMF (the left model shown in Figure 8.4). RMRM couples these two objective

models in terms of the empirical priors induced from one another.

The C-HMF focuses on modeling the credibility of each user review. This is

implemented using two means. First, C-HMF assigns different levels of confidence,

i.e., variance, for each observation, Yij, where the variance is modeled by a variance

function fC(·), which is devised based on the Bayesian reputation model as presented

in Section 3.2. As a result, the estimation of the item-factors is more dependent



191

Legend

I

Ui
C

f C

J

a

b

PoGEi

C-HMF S-HMF

Vj
C

μV
C

Yij

I

Ui
S

f S

J

c

dVj
S

μj
S

Yij

Recurrent 

Dependence

U

Parameter

Yij

Observation

rt

PoGEi

Figure 8.4 : The graphical representation of the RMRM framework, where S-HMF

and C-HMF are recurrently regularized by the empirical priors, induced from one

another.

on credible feedback. Second, a PoGE-prior is imposed on the user factors of each

user, which plays the role of regularizing user behavior in terms of relevant, high-

reputation experts. Here, such a PoGE-prior can regularize both the preference

learning of cold-start users and the behavior of spam users. Therefore, the item

factor vectors {VC
j } learned from C-HMF represents more authentic features of

items than those learned from classic MF models. At the same time, the user factor

vectors {UC
i } of tail users contain knowledge from relevant experts.

The S-HMF focuses on emphasizing the specialty of choices. The choices of tail

items are much less influenced by others, thus they better reflect personal prefer-

ences. In S-HMF, the variance function fS(·) assigns greater confidence to the choice

of items in a deeper tail. As a result, S-HMF tends to fit the observations of tail

items more tightly than those of head items. Therefore, the user factor vectors{US
i }

that are estimated from C-HMF can better reflect users’ personal preferences than

those learned using classic MF methods.
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As discussed in previous sections, long-tail items and users with little data are

more easily affected by shilling attack and cold-start issues, which leads to unreliable

estimates {VS
j } and {US

i } learned from S-HMF. According to Bayesian probabilistic

modeling, a prior plays an important role when there is limited data. Therefore,

{VC
j } and {UC

i } learned from the credibility-oriented objective model, i.e., C-HMF,

are good empirical priors to regularize S-HMF to relieve both shilling attack and cold

start. In turn, {US
i } learned from S-HMF are refined user features so they can serve

as the empirical priors for C-HMF in order to deal with popularity bias. Therefore,

we designed a RMRM framework that consists of the recurrent dependencies between

C-HMF and S-HMF to handle these challenges.

Geometric Illustration

To give an intuitive understanding of the working mechanism of RMRM, we

provide the geometric illustration depicted in Figure 8.5. Here, we demonstrate the

data fitting process of RMRM from the perspective of a given user, as well as a

similar process that can be conducted from an item perspective. The axes arrange

items (denoted as small circles) according to their popularity. More specifically,

those items where the user provides credible feedback are marked with solid circles

whereas hollow circles denote items receiving less credible feedback. The colored

lines indicate fitting curves; the closer the curve is to a circle indicates the tighter

the parameters to fit the choice of the corresponding item.

Figure 8.5(a) depicts S-HMF, which is regularized by the parameters learned

from C-HMF. Given a user i, the top fitting curve of Figure 8.5(a) reflects the

parameters learned from C-HMF, which tend to tightly fit user i’s choices with

credible feedback whereas they are loosely fit with others without credible feedback.

The middle fitting curve of Figure 8.5(a) reflects the parameters learned directly by

maximizing the heteroscedastic likelihood of the choices of user i, i.e., minimizing the
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Figure 8.5 : The geometric illustration of the recurrent mutual regularization pro-

cess, where the estimates of S-HMF and C-HMF are recurrently regularized by the

empirical priors induced from one another.

weighted loss of fitting user i’s choices (cf. Eq. 8.9 ). When the parameters learned

from C-HMF are employed as empirical priors for S-HMF, we obtain a regularized

S-HMF model, as depicted in the right part of RMRM. The parameters can be

estimated by maximizing the posterior, i.e., minimizing the objective given in Eq.

8.9), where the regularization term brings estimates closer to the given priors. As a

result, the bottom fitting curve of Figure 8.5(a) represents the regularization results

of the parameters, which more aggressively fit those choices in the tail with a high

degree of credibility.

In turn, the parameters learned from this regularized S-HMF serve as the em-

pirical priors to regularize C-HMF, as shown in the top curve of Figure 8.5(b). The

parameters learned directly by maximizing the heteroscedastic likelihood of C-HMF

tend to fit more tightly with the choices with credible feedback, as shown by the mid-

dle curve of Figure 8.5(b). When the empirical priors are imposed for regularization,

the parameters learned from the posterior of C-HMF contain the information of the

specialty of choices from the priors. Therefore, the bottom fitting curve shown in

Figure 8.5(b) tends to fit more tightly the choices of tail items than the one produced

by the maximum heteroscedastic likelihood estimation.
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Now, let us move to the next iteration, as shown in Figure 8.5(c). As in the

previous iteration, the parameters learned from the regularized C-HMF serve as the

empirical priors to regularize S-HMF. As a result, the coupled recurrent regulariz-

ing process of RMRM converges the parameters to the region that represents the

specialty of user choices and, simultaneously, enhances its credibility.

8.3.2 Learning Regularized C-HMF Model

Given observations {Yij|(i, j) ∈ O}, we can obtain the probabilistic model ac-

cording to the graphical representation of C-HMF, as shown in the left part of Figure

8.4:

P (UC
i ) = PoGE(UC

i |{µCn , ϕn}n∈Ti
) (8.11)

P (VC
j ) = N (VC

i |µCj , diag[b]) (8.12)

P (Yij|UC
i ,V

C
j ) = N (Yij|UC>

i VC
i , tω

−1
ij ) (8.13)

where µCn and µCj are the user and the item factor vectors induced from, µSn and µSj ,

i.e. the counterparts in S-HMF. The details of using PoGE to construct the prior

on UC
i will be discussed later in this section. diag[b] stands for diagonal variance

matrices of Gaussian priors. tω−1
ij as a whole denotes the variance of likelihood, where

ωij is a confidence score obtained by heteroscedastic modeling w.r.t. credibility of

feedback and t is a scale parameter to be learned.

Heteroscedastic Modeling on Credibility

The key component of C-HMF is to model the credibility of feedback on the

items that a user has chosen. Intuitively, users with higher reputations tend to give

more credible feedback. Therefore, we can employ the reputation model presented

in Section 8.2.1 to access the reputation of each user.

Reputation Modeling: As demonstrated in Section 8.2.1, each review of a

particular item is associated with a helpfulness score. Typically, a five-level score
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set, e.g., h={Not Helpful, Somewhat Helpful, Helpful, Very Helpful, Most Helpful},

is often applied to measure the helpfulness of a review. Here, we extend the beta

reputation model (cf. Section 8.2.1) to assess the reputation of each user. Intuitively,

if a user gives a lot of reviews that mostly receive high helpfulness scores, then this

user tends to be a high-reputation user. As the helpfulness scores for user reviews

are not binary feedback, i.e., positive or negative, as presented in Section 8.2.1, they

cannot directly serve as evidence. However, five-level helpfulness scores are very

suitable to be represented as a typical fuzzy set [104]. First, we can assign values

h=0,1,2,3,4 to the corresponding five-level helpfulness scores. Then, the membership

functions of helpful (+) and unhelpful (-) can be given as follows:
µ+(h) =

h+ α

hMAX + α

µ−(h) = 1− µ+(h)

(8.14)

where hMAX is the maximum score in h, e.g., hMAX = 4 in the five-level score set

above, and α ≥ 0 is a smooth parameter that bounds the degree of membership in

[α/(hMAX +α), 1], e.g., the Not Helpful score has the smallest helpfulness µ+(0) for

a review. Then, we represent the evidence ei for user i through all their helpfulness

scores hi as follows:

ei
def
= {〈µ+(hn), µ−(hn)〉|hn ∈ hi} (8.15)

As a result, we can still use Eq. 8.5 to denote the probability of evidence ei, where

we have r positive feedback where r =
∑
µ+(hn) and s negative feedback where

s =
∑
µ−(hn). Then, we define the reputation score of a user based on Eq. 8.6):

Definition 8.2: (Reputation Score) Given the helpfulness scores hi of a user i,

the reputation score of this user is defined by:

ϕ = R(ei|hi)
def
=

r + α

r + s+ α + β
(8.16)

n practice, we can set β > α a priori. That is, we assign a relatively low score,

φi = α/(α + β) < 0.5, to a new user without any observed helpful ratings, because
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spam users often create a new account when conducting an attack to avoid being

tracked by the system. Obviously, φi arrives at the upper bound only if a user

receives a lot of high helpfulness scores for their reviews. This implies that high-

reputation users are also experienced users. On the contrary, φi becomes lower if a

user always gives false reviews.

Credibility Scoring: We assign the feedback credibility for an item choice in

terms of two scores: the reputation of a user (a global score), and the helpfulness of

the review (a local score). Thus, we obtain the following:

ωij
def
=


ϕiµ+(hij) + ε (i, j) is an observed entry

ε otherwise

(8.17)

That is, the observation is associated with a high credibility score only if a high-

reputation user gives a helpful review. In particular, we set ε = 0 for explicit rating

data while ε = is set to a small constant for implicit rating data (cf. Section 8.2.2).

Since a higher credibility score means a higher confidence of that item choice, the

variance function of a feedback can be given by fC(Yij) = tω−1
ij (recall that lower

variance means higher confidence), where t is a scale parameter to learn.

PoGE-Prior

In particular, we use PoGE to construct the prior for each user in order to

incorporate the knowledge of a set of experts indexed by Ti.

PoGE(UC
i |{µCn , ϕn}n∈Ti

) =
∏
n∈Ti

N (UC
i |µCn , diag[ŵ−1

n α]) (8.18)

where wn is a weight parameter. In general, PoE (Product of Experts) [77] has

an intractable form. Fortunately, the product of Gaussian densities has a closed

form, that is, a new Gaussian density [231]. Therefore, we can obtain the following

Gaussian distribution from Eq. 8.18:

PoGE(UC
i |{µCn , ϕn}n∈Ti

) = N (UC
i |µ̂Ci , diag[ŵ−1

n α]) (8.19)
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where µ̂Ci =
∑

n∈Ti
wnµC

n

ŵi
with ŵi =

∑
n∈Ti

wn. Obviously, the mean parameter µCi of

the PoGE distribution is a weighted average of the user factor vectors of all related

experts.

In this chapter, we construct the related expert set as follows:

Ti = i ∪NK
i ∪NR ∪ µ0 (8.20)

In Eq. 8.20, i stands for the target user itself. NK
i is the top-K neighbors of user

i; the neighbors could be a set of users with an explicit relationship with i, e.g.,

trusters [142] or followers [239]; they can also be constructed from the data [116] if

no explicit relation is available. NR denotes the top-R high-reputation experts in

the system. Moreover, µ0 is an optional expert with a zero-mean Gaussian prior to

avoid overfitting. As illustrated in Eq. 8.11, we use the reputation score ϕn (cf. Eq.

8.16) of a user as the weight wn of an expert in PoGE (cf. Eq. 8.18). By taking the

log-form of PoGE over this expert set Ti, we easily obtain the following summation

form:

logPoGE(UC
i |{µCn , ϕ}n∈Ti

) (8.21)

= logN (UC
i |µCi , diag[ϕ−1

n α]) +
∑
k∈NK

i

logN (UC
i |µCi , diag[ϕ−1

n α])

+
∑

r∈NR
logN (UC

i |µCr , diag[ϕ−1
r α]) + logN (UC

i |0, diag[ϕ−1
0 α])

= ϕi‖α−1 ·∗ (UC
i − µCi )‖2

2︸ ︷︷ ︸
self-based regularization

+
∑

k∈NK
i

ϕk‖α−1 ·∗ (UC
i − µCr )‖2

2︸ ︷︷ ︸
neighbor-based regularization

+
∑

r∈NR
ϕr‖α−1 ·∗ (UC

i − µCr )‖2

2︸ ︷︷ ︸
expert-based regularization

+ ϕ0‖α−1 ·∗ UC
i ‖

2

2︸ ︷︷ ︸
complexity-regularization

+ T (·)︸︷︷︸
self-based regularization

From the above equation, we find that UC
i is respectively regularized by four types of

experts as specified in Ti. In the first term, µCi is the user factor vector of the target

user itself so it serves for self-based regularization. Since the majority of users are

tail users with limited data, it is useful to borrow information from their neighbors.
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As a result, the user factor vectors {µCk } from i’s neighbors NK
i are employed for

neighbor-based regularization. Moreover, we involve a set of high-reputation experts

NR in the system to conduct expert-based regularization because effective self-based

regularization and neighbor-based regularization are often not available, e.g., a fully

cold-start user who has no data available and no neighbors or a spam user who

only links other spam users as his neighbors. The last regularization term is simply

the most frequently used L2-norm regularizer when a is set 1, which penalizes the

complexity to prevent overfitting. Due to the equivalence between Eq. 8.18 and Eq.

8.19, Eq. 8.21 can be reformed to Eq. 8.22:

logPoGE(UC
i |{µCn , ϕ}n∈Ti

) (8.22)

= logN (UC
i |µ̂Ci , diag[ϕ−1

i α]) = ϕ̂i‖α−1 ·∗ (UC
i − µ̂Ci ‖)2

2 + T (·)

where µ̂Ci =
∑

n∈Ti
ϕnµC

n

ϕ̂i
with ϕ̂i =

∑
n∈Ti

ϕn. From the perspective of Eq. 8.21,

ϕn controls the penalty of loss for fitting µCn , i.e. a higher reputation expert has a

larger regularization effect. From the perspective of Eq. 8.22, the empirical prior

mean µCi is a weighted average user factor vector over Ti, so µCi receives more

contributions from higher reputation experts with a larger ϕn. Note that ϕ0 is not

a reputation score but a common regularization parameter as λ in Eq. 8.2, and

it can be determined by usual regularization parameter selection methods, such as

cross-validation.

Parameter Learning

We can obtain the marginal log-likelihood by integrating UC ,VC from the joint

distribution:

logP (Y) = log

∫
P (Y,UC ,VC)dUCdVC (8.23)

where P (Y,UC ,VC) =
∏

ij∈O P (Yij|UC
i ,V

C
j )
∏

i P (UC
i )
∏

j P (VC
j ).

However, the computation of Eq. 8.23 is generally intractable. To enable it to run
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efficiently on large-scale data and the precise learning parameters for our model, we

use the variational Bayesian (VB) method, which provides a good balance between

efficiency and accuracy in learning latent features [109, 133, 196]. Now, if we let

Q(UC ,VC) be the variational distribution, we can then obtain the lower bound by

applying Jensen’s inequality [196].

logP (Y) ≥
∫
Q(UC ,VC) log

P (Y,UC ,VC)

Q(UC ,VC)
dUCdVC = L(Q) (8.24)

The lower bound L(Q) can be rewritten using the expectation conditional onQ(UC ,VC)

from Eq. 8.24, and it becomes tight only when Q(UC ,VC) = P (UC ,VC |Y).

L(Q) = EQ[logP (UC ,VC |Y + logP (UC) + logP (VC)] +H[Q(UC ,VC)] (8.25)

Generally, it usually assumes Q(UC ,VC) has a factorial form [109,133,196]:

Q(UC ,VC) = Q(UC)Q(VC) =
∏
i

Q(UC
i )
∏
j

Q(VC
j ) (8.26)

Here, Q(UC
i ) and Q(VC

j ) are variational Gaussian distributions with diagonal vari-

ance matrices:

Q(UC
i ) = N (UC

i |uCi , diag[λCi ]) Q(VC
j ) = N (VC

j |vCj , diag[γCj ]) (8.27)

Then, we can write Eq. 8.25 as the following form by using the Eq. 8.11, 8.12, 8.13
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and 8.26:

L(Q) =
∑
ij∈O

EQ(UC
i )Q(VC

j )[logP (Yij|UC
i ,V

C
j )] (8.28)

+
∑
i

EQ(UC
i ) logP (UC

i ) +H[Q(UC
i )] +

∑
j

EQ(VC
i ) logP (VC

i ) +H[Q(VC
i )]

=
∑
ij∈O

EQ(UC
i )Q(VC

j )[logN (Yij|UC>
i VC

j , tω
−1
ij )]

+
∑
i

EQ(UC
i ) logN (UC

i |µCi , diag[ω̂−1
i a]) +H[N (UC

i |uCi , diag[λCi ])]

+
∑
j

EQ(VC
j ) logN (VC

j |µCj , diag[b]) +H[N (VC
j |vCj , diag[γCj ])]

=
1

2

(∑
ij∈O

log 2πt−1ωij − t−1ωij
[
(Yi,j − uC>i vCj )·2

+ (uCi ·2)>γCj + λC>i (vCj ·2 +γCj )
])

− 1

2

(∑
i

log ‖2πϕ̂ia·−1‖2 +
[
(uCi − µCi ) ·2 +λCi

]>
ϕ̂ia ·−1 − log ‖2πeλCi ‖2

)

− 1

2

(∑
j

log ‖2πb·−1‖2 +
[
(vCj − µCj ) ·2 +γCj

]>
b ·−1 − log ‖2πeγCj ‖2

)

Let us denote {UC
,ΛC ,V

C
,ΓC} as the variational parameters and {a,b, t} as

the model parameters where U
C

= [uCi ]1≤i≤N stands for a matrix consisting of mean

vectors and ΛC = [λCi ]1≤i≤N denotes a matrix consisting of the variance vectors of

Q(UC), and V
C

, ΓC are defined similarly w.r.t. Q(VC). To maximize L(Q), we can

use coordinate ascend, i.e. iteratively optimizing L(Q) by searching for a solution for

one parameter at a time and fixing the others. Table 8.2 summarizes the updating

scheme for each parameter.

The Tricks for Complexity Reduction

The data matrix Y and its corresponding weight matrix W = t−1ω are very

sparse as they pertain to explicit rating data, where non-zero entries in these two
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Table 8.2 : Parameter updating scheme for C-HMF

In the following equations, we denote Wij = t−1ωij

Update parameters {uCi ,λCi } of distribution Q(UC
i ) in parallel, for each i:

uCi ←− Ψi

[
V
C

diag(Wi,:)Y
>
i,: + ϕ̂ia ·−1 ·∗µCi

]
(8.29)

where Ψ−1
i = diag(ϕ̂ia·−1) + V

C
diag(Wi,:)V

C>
+ diag(ΓCW>

i,:)

λCi ←− (V
C ·2 +ΓC)W>

i,: + ϕ̂i ·−1 a (8.30)

Update parameters {vCj ,γCj } of the distribution Q(VC
j ) in parallel, for each j:

vCj ←− Ψj

(
U
C

diag(W:,j)Y:,j + b ·−1 ·∗µCj
)

(8.31)

where Ψ−1
j = diag(b·−1) + U

C
diag(W:,j)U

C> + diag(ΛCW:,j)

γCj ←− (U
C ·2 +ΛC)W>

i,: + b (8.32)

Update model parameters {a,b, t}:

a←−
∑

i ϕ̂i
[
(uCi − µCi ) ·2 +λCi

]
N

(8.33)

b←−
∑

j

[
(vCj − µCj ) ·2 +γCi

]
M

(8.34)

t←−
∑

ij∈O ωij
[
(Yi,j − uC>i vCj ) ·2 +(uCi ·2)>γCj + (vCj + λCi )>λCi

]
|O|

(8.35)
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matrices are associated with observed ratings. Due to the factorial variational dis-

tribution Q(UC ,VC), the parameter updating scheme of Table 8.2 is naturally par-

allelizable. The updating scheme in Table 8.2 can be implemented in the same

way as that used by Kim and Choi [109] who designed a scalable parameter up-

dating scheme for variational Bayesian MF. Accordingly, the time complexity is

O(3K[
∑

i |W
≥0
i,: | +

∑
j |W

≥0
:,j |]) = O(6K|O) as illustrated in [109], where |W≥0

i,: |

equals the number of observed ratings for user i, |W≥0
i,: ≥ 0| equals the number of

observed ratings for item j, and |O| is the total number of observed ratings. In

practice, the length of the latent factor vector, K, is small, and in our experiments,

it yields good results for K ≤ 10. Normally, the data density, s = |O|/NM , of most

explicit rating data sets is very small, i.e. large sparsity, in the real world, usually

s ≤ 0.01% (e.g., the RED dataset). Therefore, this updating scheme is executed

very efficiently.

In the case of implicit rating data, the blank entries in data matrix Y are also

modeled as implicit feedback [82,91]. Accordingly, in this case, the weight matrix W

is a full matrix, i.e. |O| = |W≥0|, having the space complexity O(NM) (cf. Eq. 8.10

and Eq. 8.17). Normally, it is impractical to load such a full matrix W into memory.

From the analysis above, the time for running this updating scheme on implicit

rating data is 1/s (i.e., often more than 10,000) times slower than running it on

explicit rating data. To improve the running performance on the implicit rating data,

we can apply the following trick to reduce the complexity. If we let W̃i,: = Wi,: − c

and c = t−1ε, we write each row of W as Wi,: = W̃i,: + c. According to Eq. 8.17,

it is easy to see that Wi,: only has non-zero entries on observed ratings. Now, let

us take updating for {uCi , λCi } as an example. In Eq. 8.29, V
C

diag(Wi,:)V
C>

can

be rewritten as V
C

diag(W̃i,:)V
C>

+ cV
C
V
C>

; obviously, the term cV
C
V
C>

is not

dependent on the user index i, so it can be pre-computed in time at most O(K2M)

and less than O(KM) using parallel multiplication. Similarly, V
C

diag(Wi,:)Y
>
i,:
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can be written as V
C

diag(W̃i,:)Y
>
i,: + cV

C
Y>i,:, where the term cV

C
Y>i,: can be

computed in time less than O(KM) due to the sparse Yi,:. Moreover, ΓCWi,:)
> can

be written as ΓCW̃>
i,:)
>+ cΓC1, where the term cΓC1 can be computed in less time

than O(KM) because ΓC1 is equivalent to summing ΓC by rows. Using the same

trick, the additional time in parallel computing {λCi } is also O(KM). Therefore,

the overall additional time cost is O(4KM) when learning {uCi ,λCi } in this parallel

fashion. When applying this trick to updating {vCj ,γCj }, the overall additional time

cost is O(4KN). Moreover, we can compute t by summing over i in a parallel

way, where the additional time cost is also O(KM) since ωi,: = tWi,:. As a result,

the overall additional time cost for implicit rating data is O(K[M + N ]), so the

whole time complexity is O(6K|W̃≥0|) + O(4KM) + O(4KN) + O(K[M + N ]) =

O(6K|W̃≥0|+5K[M+N ]) < O(6K[|W̃≥0|+M+N ]). Normally, M+N << |W̃≥0|,

so O(6K[|W̃≥0|+M +N ]) is within the same order as O(6K|W̃≥0||).

By applying this trick, updating the equations depends on the sparse weight

matrix W̃ instead of the full matrix W, so the space complexity to store W̃ is the

same as the sparse weight matrix in the case of explicit rating data. Therefore, it

can be concluded that the time and space complexities of the learning parameters

on the implicit rating data is a little higher than those on the explicit rating data,

but still in the same order.

8.3.3 Learning Regularized S-HMF Model

When the parameter set, {UC
,ΛC ,V

C
,ΓC}, is learned from C-HMF, we obtain

the distribution of UC
i and VC

j approximated by the variational distributions Q(UC
i )

and Q(VC
j ). Therefore, we can sample µSi ∼ Q(UC

i ) and µSj ∼ Q(VC
j ) as the means

of empirical prior distributions for S-HMF. To avoid unnecessary sampling noise, the

expectations, µSi = E[Q(UC
i )] = uCi and µSj = E[Q(VC

j )] = vCj are often used as the

means of empirical prior distributions. As a result, we can write the probabilistic
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model of S-HMF, shown in the right part of RMRM in Figure 8.4 as follows:

P (US
i ) = PoGE(US

i |{µSn, ϕn}n∈Ti
) (8.36)

P (VS
j ) = N (VS

i |µSj , diag[d]) (8.37)

P (Yij|US
i ,V

S
j ) = N (Yij|US>

i VS
i , rη

−1
ij ) (8.38)

where diag[d] are diagonal covariance matrices. Additionally, rη−1
ij denotes the

variance of likelihood, where ηij is a novelty score given by the variance model

and r is a scale parameter to be learned.

Heteroscedastic Modeling on Specialty

As discussed previously, popular items tend to be widely known by users and

have more interaction, so both the choices of and the feedback for these items may

largely be influenced by others, whereas tail items tend to be chosen more indepen-

dently, thus the choices of these items can better reflect the personal preferences of

users [217]. As a result, we model the specialty of user choices on the basis of the

popularity of items.

Specialty Modeling: If we denote the probability of choosing item j as θj, then

we have the multinomial distribution over all the items, where Γ(·) is the gamma

function and |Oj| denotes the number of observed choices of item j:

Mult({|Oj|}|θ) =
Γ(
∑

j |Oj|+ 1)∏
J Γ(|Oj|+ 1)

∏
j

θ
Oj

j (8.39)

Moreover, we place a symmetric Dirichlet-prior, Dir(θ|α) on θ, where the hyper-

parameter α can be interpreted as the number of pre-given, pseudo-choices of each

item. Then, we can obtain the posterior for all observations:

Dir({|Oj|+ α}) ∝
∫
Mult({|Oj|}|θ)Dir(θ|α)dθ (8.40)
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The expectation of this posterior on choosing item j is:

E|Oj |[Dir({|Oj|+ α})] =
|Oj|+ α∑
j(|Oj|+ α)

= p̄(j|α) (8.41)

where p̄(j|α) is the smoothed version of the probability of choosing item j to avoid

zero probability, a.k.a. Laplace smoothing of the new items or the items with un-

counted choice in a given dataset. In information theory, self-information is a mea-

sure of the information content associated with an event in a probability space.

Here, a choice is such an event. As analyzed previously, choices on tail items can

reflect users’ special preferences, i.e., these choices contain more information con-

tent. As a result, we give the following definition of specialty of choice in terms of

self-information:

Definition 8.3: (Specialty of Choice) Given all observed choices, the specialty of

a choice on an item j is measured by self-information:

φj = − log p̄(j|α) (8.42)

Specialty Score: We assign the credibility of feedback on a choice in terms

of two scores: the reputation of a user (a global score), and the helpfulness of the

review (a local score), thus we obtain:

ηij
def
=


ψj + ε (i, j) indexes an observation

ε otherwise

(8.43)

That is, the observation is associated with a high credibility score only if a high-

reputation user gives a helpful review. In particular, we set ε = 0 for explicit rating

data while ε is set to a small constant for implicit rating data (cf. Section 8.2.2).

Since a higher credibility score means a higher level of confidence in that choice,

the variance function of a piece of feedback can be given by fS(Yij) = rη−1
ij (note

that lower variance means higher confidence), where t is a scale parameter to be

learned.
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Parameter Learning

Similar to the derivation of VB on C-HMF, we can easily obtain the lower bound

of marginal log-likelihood of S-HMF:

logP (Y) ≥
∫
Q(US,VS) log

P (Y,US,VS)

Q(US,VS)
dUSdVS = L(Q) (8.44)

where Q(US,VS) =
∏

iQ(US
i )
∏

j Q(VS
j ) = N (US

i |uSi , diag[λi])N (VS
j |vSj , diag[γj])

is a factorized variational Gaussian distribution. The parameter updating scheme is

given in Table 8.3; here, the variational parameters {US
,ΛS,V

S
,ΓS} and the model

parameters {c,d, r} are updated in turn to maximize L(Q), where U
S

= [uSi ]1≤i≤N

denotes a matrix consisting of mean vectors and ΓS = [λSi ]1≤i≤N denotes a matrix

consisting of variance vectors w.r.t. Q(US, and where V
S
,ΓS are defined similarly

w.r.t. Q(VS. With the same trick as that applied to C-HMF, we can efficiently

implement this parameter updating scheme on the implicit rating data.

After the parameters of S-HMF are learned, we can either sample µSi ∼ Q(US
i )

and µSj ∼ Q(VC
j ) or use the expectations of the variational Gaussian distribution,

µSi = E[Q(US
i )] = uSi , to construct the PoGE-based empirical priors for the coupled

model, C-HMF (cf. Eq. 8.18).

8.4 Algorithm and Prediction

So far, we have presented the details of RMRM and the parameter learning

schemes w.r.t. C-HMF and S-HMF, respectively. Algorithm 2 summarizes the

whole learning process with recurrent regularization in terms of coupled empirical

priors.

In Algorithm 1, we run k-step variational updating for both C-HMF (cf. Line 6)

and S-HMF (cf. Line 9). In practice, this works well with a small k (less than 10).

This type of updating strategy can be viewed as k-step, mean-field, contrastive di-

vergence [Welling and Hinton 2002], which has proved its effectiveness theoretically.
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Table 8.3 : Parameter updating scheme for S-HMF

In the following equations, we denote Wij = r−1ηij

Update parameters {uSi ,λSi } of distribution Q(US
i ) in parallel, for each i:

uSi ←− Ψi

[
V
S

diag(Wi,:)Y
>
i,: + ϕ̂ia ·−1 ·∗µSi

]
(8.45)

where Ψ−1
i = diag(ϕ̂ia·−1) + V

S
diag(Wi,:)V

C>
+ diag(ΓSW>

i,:)

λSi ←− (V
S ·2 +ΓS)W>

i,: + ϕ̂i ·−1 a (8.46)

Update parameters {vSj ,γSj } of the distribution Q(VS
j ) in parallel, for each j:

vSj ←− Ψj

(
U
S

diag(W:,j)Y:,j + b ·−1 ·∗µSj
)

(8.47)

where Ψ−1
j = diag(b·−1) + U

S
diag(W:,j)U

C> + diag(ΛSW:,j)

γSj ←− (U
S ·2 +ΛS)W>

i,: + b (8.48)

Update model parameters {a,b, t}:

c←−
∑

i ϕ̂i
[
(uSi − µSi ) ·2 +λSi

]
N

(8.49)

d←−
∑

j

[
(vSj − µSj ) ·2 +γSi

]
M

(8.50)

r ←−
∑

ij∈O ωij
[
(Yi,j − uC>i vSj ) ·2 +(uSi ·2)>γSj + (vSj + λSi )>λSi

]
|O|

(8.51)
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Algorithm 2 Parameter Learning for RMRM

1: Pre-compute credibility score ωij for each entry using Eq. 8.17;

2: Pre-compute specialty score ηij for each entry using Eq. 8.43;

3: it← 0

4: while it ≤MAX ITERATION do

Learning C-HMF

5: Construct empirical priors via Eq. 8.11 and 8.12 using {µSi ,µSj } from S-HMF

6: Run k-step parameter updating as Table 8.2

7: for each fully cold-start user c do

8: UC
c = E

[
PoGE

(
{UC

t , ϕt}t∈NK
i ∪NR

)]
9: end for

Learning S-HMF

10: Construct empirical priors via Eq. 8.36 and 8.37 using {µCi ,µCj } from C-

HMF

11: Run k-step parameter updating as Table 8.3

12: for each fully cold-start user c do

13: US
c = E

[
PoGE

(
{US

t , ϕt}t∈NK
i ∪NR

)]
14: end for

15: end while

Moreover, we use PoGE to approximate the distribution of user factors of those

who are fully cold-start users without any feedback (cf. Lines 7 and 10). Since there

is no data available for a fully cold-start user to update his/her user factors, we

post-update them using the updated user factors from their mostly related trusters

when the sub-iterations of C-HMF and S-HMF are finished.

Prediction: After the parameters of RMRM are learned, we obtain the regular-

ized estimates {UC ,VC} for C-HMF and {UC ,VC} for S-HMF. We can predict the
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missing entries of the user-item matrix using the MF reconstruction form using these

estimates. According to the variational approximation, we have UC
i ∼ Q(uCi ,λ

C
i )

and VC
i ∼ Q(vCi ,γ

C
i ); the means of UC

i and VC
i are just uCi and vCj which can be

obtained from Eq. 8.29 and Eq. 8.31. Therefore, we can reconstruct the value of

entry (i, j) as follows:

Ŷij = E
[
P (UC>

i VC
j )
]
≈ E[Q(UC

i ]Q[VC
j )] = uC>i vCj (8.52)

Similarly, we can reconstruct the value of entry (i,j) using US
i and VS

j :

Ŷij = E
[
P (US>

i VS
j )
]
≈ E[Q(US

i ]Q[VS
j )] = uS>i vSj (8.53)

Whether to choose the prediction result from Eq. 8.52 or Eq. 8.53 is dependent

on specific data sets. In general, the prediction results from Eq. 8.53 place more

emphasis on the personal taste for specific choices, so-called RMRM-S, whereas the

prediction result from Eq. 8.52 may achieve better performance in a system with a

large amount of spam feedback, so-called RMRM-C. In practice, we choose one of

these dependent on a real-world environment.

8.5 Discussion

So far, we have presented RMRM and the corresponding learning algorithm. In

fact, the idea and the methods adopted by RMRM have direct connections with

other methods. Hence, we discuss these connections in this section.

8.5.1 Multi-objective Optimization

RMRM consists of two main components, where C-HMF models user choices by

emphasizing credibility and S-HMF models user choices by emphasizing specialty.

Each component leads to an objective for optimization, so RMRM deals with a

multi-objective optimization problem (MOP) [44]. However, the conventional MOP
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often has two independent objectives, thus it needs to obtain solutions using higher-

level information, whereas the two objectives of RMRM are coupled by the empirical

priors induced from each other. In fact, the two objectives of RMRM are constructed

from the same data, and we use a recurrent algorithm to learn the parameters that

are regularized by the empirical priors induced from each other objective model.

Therefore, RMRM is a variant case of MOP.

In general, the optimal solution of MOP is not unique, and it often uses a genetic

algorithm to search the solution space [Deb 2014]. The recurrent learning algorithm

of RMRM induces new empirical priors in each iteration, and S-HMF and C-HMF

are reset using the new priors, which leads to new objectives for optimization, cf. Eq.

8.24 and Eq. 8.44. Hence, an iteration of RMRM corresponds to a generation of a

genetic algorithm to search for the optimal solution. Taking Eq. 8.44 as an example,

the new objective may find better estimates of the parameters, provided that we

have learned better priors P (US
i ) and P (VS

j ), leading to better P (Y|US,VS). As a

result, the marginal likelihood P (Y) is improved (cf. Eq. 8.44). Moreover, the new

empirical priors from the peer model can help to find a better optimal solution in

the next iteration. In comparison, the objective function of a single-objective model,

such as MF, does not change with iterations so they more easily become stuck in

local minima.

8.5.2 Social Regularization from PoGE Perspective

In recent years, one prevalent approach of RSs has been to incorporate social

relationships for regularization [94, 141]. This method is built on the basic idea

that users’ preferences are mostly influenced by others with the strongest social

relationships, typically, their trusters. In general, the social regularization on a user

i often leads to the following two forms of the regularization term, and we denote
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them as SR1 [141] and SR2 [94,141], respectively.

SR1 : λ1‖Ui −
∑

t∈Ti
sitUt∑

t∈Ti
sit
‖

2

2

SR2 : λ2

∑
t∈Ti

sit‖Ui −Ut‖2
2

where Ti denotes i’s truster set, sit is the strength or similarity between i and t [141],

or where we can simply use sit = 1 to denote an observed link [94].

It is interesting to find that, in fact, both SR1 and SR2 are identical from the

PoGE perspective, as both of them actually correspond to the same PoGE-prior.

Now, let us set up the PoGE-prior for user i as follows:

PoGE(Ui|{Ut, sit}t∈Ti
) =

∏
t∈Ti

N (Ui|Ut, λ
−1
2 s−1

it 1) (8.54)

Obviously, we can obtain SR2 by taking the negative log-form of Eq. 8.54. According

to Eq. 8.19, we can obtain the following equivalent form from Eq. 8.54:

PoGE(Ui|{Ut, sit}t∈Ti
) = N

(
Ui

∣∣∣∣
∑

t∈Ti
sitUt∑

t∈Ti
sit

, λ−1
1 1

)
(8.55)

where λ1 = λ2

∑
t∈Ti

sit . By taking the negative log-form of Eq. 8.55, we imme-

diately obtain SR1. Therefore, SR1 and SR2 are actually derived from the same

PoGE-prior, so we prove the identity between them. In fact, by using SR1 and

SR2, the evaluation results are very close [141]. The small difference is probably

caused by the settings of the regularization parameters λ1 and λ2 and by the random

initialization of the parameters.

8.6 Experiments

We conduct empirical evaluations using two real-world datasets that cover the

cases of, respectively, explicit rating data and implicit rating data. We compare
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RMRM with a set of state-of-the-art methods gauged by various metrics. The

overall results prove that our approach significantly outperforms all the compared

methods.

8.6.1 A Comparison of the State-of-the-Art Methods

In the following experiments, a group of state-of-the-art methods introduced in

Section 3.5 with the following settings; some are used for explicit rating data and

others for implicit rating data.

• PMF : This method learns the factors of users and items from a rating matrix

without taking additional information into account.

• Trust-kNN: This method takes the top-k, high-reputational trusters of a user

as the neighbors, and then predicts the user’s rating of an item by averaging

the available neighbors’ ratings for that item [102].

• SoRec: This method jointly models the trust-link matrix and a user-item

rating matrix, which shares user factors to propagate the interaction between

two matrices.

• SoReg : This method utilizes the trust relationships to construct the regularizer

to learn user factors.

• SocialMF : This method is very similar to SoReg. The main difference lies in

the setting of similarities for trusters.

• MF-IR: This is a zero-mean WRMF model to deal with implicit rating data.

• SoRec-IR, SoReg-IR, SocialMF-IR: The original versions of SoRec, SoReg, and

SocialMF were designed for learning preferences from explicit rating data. To

enable them to deal with implicit rating data, we extend them using weight

modeling, as in MF-IR.
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• C-HMF : One of the main components of RMRM is to enhance credibility-

based modeling. Moreover, we use zero-mean regularization since the single

model does not have the empirical priors learned through S-HMF.

• S-HMF : One of the main components of RMRM is to enhance specialty-based

modeling. Moreover, we use zero-mean regularization since the single model

does not have the empirical priors learned through C-HMF.

• RMRM : RMRM is the main model proposed in this chapter. Since C-HMF

and S-HMF can model both explicit rating data and implicit rating data in a

unified way, RMRM naturally has an advantage. In particular, we use RMRM-

C to denote the prediction results generated using Eq. 8.52, and RMRM-S to

denote the prediction result generated using Eq. 8.53.

8.6.2 Explicit Rating Data Evaluation

Data Preparation

We construct a truncated dataset from the RED dataset [151], as mentioned in

the introduction by filtering both users and items with fewer than three ratings. This

is because no data will be available for training if a user or an item only accounts

for one or two ratings that are held out for testing. In addition, we need at least two

testing items for a user in order to evaluate the accuracy of the ranking for these

items. The statistics of this evaluation dataset are illustrated in Table 8.4.

Figure 8.6 demonstrates the long-tail distributions for the number of ratings

w.r.t. items and users. We find that a large number of both items and users in

the tail have very few ratings. Therefore, this dataset is suitable to evaluate the

performance of recommendations for users and items in the tail of distributions. The

hyperparameters of the compared methods are tuned by cross-validation. Here, we

find that the length of the latent factor vector can produce good results with this
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Table 8.4 : Statistics of the Epinions Dataset

# users: 39,902 # items: 63,027

# trust links: 43,8965 # trusters / # users: 11

max # of trusters: 1,713 # users with zero truster: 14,202

# ratings: 734,441 density: 0.029%

# ratings / # users: 18 # ratings / # items: 11

max # ratings of user: 1,809 max # ratings of item: 2,112
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Figure 8.6 : Long-tail distributions for the number of ratings of items and users

(truncated from 0 to 500).

dataset by setting K=5.

Figure 8.7 illustrates the distributions of the number of helpful scores w.r.t.

items and users in this evaluation dataset. We find that they have similar long-tail

distributions with those in Figure 6. This is a natural phenomenon because helpful

scores are based on reviews, and more reviews tend to receive more helpful scores.

Thus, these helpful scores are used for the reputation model. In this experiment,

we set α = 1 and β = 3 in Eq. 8.16 to compute the reputation scores. That is, the

initial reputation score is 0.25 for new users.
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Figure 8.7 : The distributions for the number of helpful scores w.r.t. items and users

(truncated from 0 to 200).

Prediction of Long-tail Distributed Items

Improving the prediction performance of long-tail items would obviously bring

more business profit to a company by precisely targeting a specific group of users. To

evaluate the prediction performance of long-tail items, we randomly hold out 20%

of the data from the evaluation dataset as the ground truths for testing, denoted as

Ts20. Then, as shown below, we split Ts20 into four parts according to the popularity

of the items so that we can compare the performance of different methods using both

short-head items and long-tail items.

• Most Popular: The items in the headmost 5% of the distribution, as shown in

the left-hand image of Figure 6.

• Less Popular: The items in the 5-20% interval of the distribution.

• Shallow Tail: The items in the 20-50% interval of the distribution.

• Deep Tail: The items in the endmost 50% of the distribution.

We evaluate the MAE of all comparative methods of these four parts of the

distribution. Note that the data becomes extremely sparse in the deep tail, and, as

a result, Trust-kNN is barely effective, as all of the neighbors tend never to rate the

testing items. In such a case, we simply predict the ratings of an item as Mean+ε,
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where Mean denotes the mean rating for all items, and ε is a small random value,

following standard Gaussian distribution.

Figure 8.8 reports the results of the comparison of all methods for the four parts

of the distribution. We find the performance of Trust-kNN decreases when the data

become sparser since the tail items are rarely rated, which results in the random

prediction mentioned above. Obviously, such neighborhood-based methods have a

limitation when conducting recommendations in the long tail. We find that PMF

outperforms Trust-kNN, as it does not need to search the neighborhood; instead,

similarity is implicitly represented by latent factors. However, PMF suffers from

the three aforementioned typical issues in long-tail recommendations. As illustrated

by the four cases shown in Figure 8, we find that PMF achieves a relatively higher

accuracy in the cases of Most Popular and Less Popular, but that the performance

becomes worse when the available ratings for items become fewer, especially in

the case of Deep Tail. In comparison, C-HMF improves the ability to alleviate

shilling attacks, and it enables user preference for the long-tail items that are to be

targeted in terms of heteroscedasticity modeling. As a result, C-HMF significantly

outperforms PMF.

The remaining models involve trust relationships as the secondary information

aspect, which addresses data insufficiency in the tail of distribution. Comparing

SoRec with PMF, we find that the involved truster relationships are helpful to im-

prove the accuracy of long-tail items. However, both the rating matrix and the

trust matrix convey heterogeneous information, but SoRec cannot find a best trade-

off point for all users. To overcome this deficiency, SoReg and SocialMF incorporate

the context of trusters to regularize user factor learning. The results prove that

SoReg is more effective than SoRec. In particular, RMRM-S is selected in this

experiment since we would like to more aggressively emphasize users’ special pref-

erences over tail items. From the results, we easily find that RMRM-S achieves
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Figure 8.8 : MAEs of rating prediction for the long-tail item distribution.
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the best performance for all four cases. Note that the performance of Deep Tail is

even better than Most Popular, which demonstrates that our model is able to better

learn users’ preferences from the long tail. Moreover, the deviations of the MAEs

in the four cases are small. Such stable performance over the whole distribution

may be attributed to the fusion of reliability and novelty, brought about by the

coupled recurrent regularization. Therefore, we can conclude that RMRM-S is the

most accurate model for recommending long-tail items.

Prediction on Long-tail Distributed Users

Accurate recommendations for long-tail users can significantly improve users’

experiences and users’ retention rates. In the next experiment, we conduct an eval-

uation on the testing set Ts20. As in the previous experiment, we split Ts20 into

four parts according to the activity of the users to compare the performance of both

the short-head and long-tail users.

• Most Active: The users in the headmost 5% of the distribution, as shown in

the right-hand image of Figure 6.

• Less Active: The users in the 5-20% interval of the distribution.

• Shallow Tail: The users in the 20-50% interval of the distribution.

• Deep Tail: The endmost 50% users of the distribution of the distribution.

Figure 8.9 shows the comparative results of all of the methods for the long-tail

user distribution. We observe similar results to those in the previous experiment.

Actually, conducting accurate predictions for deep-tail users is more difficult than

for deep-tail items because almost all deep-tail users have both few ratings and few

trust relationships. For those models that do not use trust relationships, S-HMF

achieves the best performance since the heteroscedasticity modeling of user choices

enables it to learn users’ personal preferences better.
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In particular, we found that more than one-third of the users have no links, as

illustrated in Table 8.4. Consequently, SoRec cannot obtain secondary information

for these users due to the lack of links in the trust matrix. Similarly, no truster is

available to conduct regularization for SoReg and SocialMF. As a result, these meth-

ods cannot learn user factors when there is no trust link available for a cold-start

user. To overcome this deficiency, RMRM-S incorporates top-N high-reputation ex-

perts into the system. Hence, RMRM-S can still conduct regularization, even when

no direct trusters are available. Since RMRM-S takes the advantages of C-HMF,

S-HMF, and SoReg, it results in a significant improvement in recommendations for

long-tail users.

Impact of the Number of Involved Trusters

The previous experiments show that borrowing knowledge from trusters can

be very helpful to address the challenges of recommendations for long-tail items.

In RMRM, the truster set consists of two parts: the trusters that a user actively

follows, and the experts with the highest reputation in the system, cf. Eq. (24).

We next illustrate the impact of the number of user trusters and the number of

system trusters, respectively. In this experiment, we use the same testing set as in

the previous experiments.

MAEs for Different Numbers of Involved User Trusters: We fix five

high-reputation system experts and vary the number of top-K trusters, where K ∈

{5, 10, 20, 50, All}, to compare the performances. Figure 8.10a displays the results

when the number of trusters changes. We find that increasing the number of trusters

improves the performance of tail users. This is because they account for very little

data, so there is a need to incorporate more trusters for regularization. In compari-

son, we find that the performance of head users is not improved, and even becomes

worse when K increases. This can be attributed to the fact that head users account
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Figure 8.10 : MAEs varying the numbers of involved (a) user trusters, and (b)

system experts.

for sufficient data, which enables RSs to learn their preferences without borrowing

information from others. Moreover, we find that involving too many trusters does

not improve performance. It can thus be interpreted that the priors from too many

trusters over-regularize the user preferences learning.

MAEs for Different Number of Involved System Experts: We fix the

top five trusters of each user, and vary the number of top-K high-reputation system

experts, where K ∈ {5, 10, 20, 50, 100}. From Figure 8.10b, we find that the perfor-

mance is very close under different K, becoming a little worse when K reaches 100.

That is, it involves too many experts, which may over-regularize the user factors

learning. As a result, we only need to involve a small group of system experts in

practice.

Shilling Attack Simulation

In this experiment, we attempted to test the robustness of each model in a

shilling attack environment. To simulate such an environment, we created 1,000

virtual spam users to conduct the attack, and we respectively selected 100 items
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from the head (0%-20%) and the tail (20%-100%) as the attack targets. In this

experiment, we conducted nuke attack in the case of the average attack model [24].

More specifically, we first randomly selected the 50 most popular items from the

head of distribution to serve as the filler item set [24]. Before conducting the attack,

we assigned each item in the filter item set with the mean rating of that item for

each spam user. As a result, we built a fake profile for these spam users who have

average preferences that are similar to most users. Then, we simulated the nuke

attack on each target item by injecting fifty minimum ratings, i.e. 1, from fifty out

of 1,000 spam users by random selection. Thus, we constructed a user-item rating

matrix with fake ratings and spam users.

We retrained all the comparison models on this attacked rating matrix and then

made predictions. Figure 8.11 illustrates the prediction results for the head items

(left) and the tail items (right). Obviously, the MAEs of the head items are lower

overall than those of the tail items, which reveals the fact that the tail items are

more easily biased by fake ratings due to the few ratings they receive. PMF achieves

poor performance because it is completely based on the ratings for each user without

incorporating any other information, whereas SoReg and SocialMF are more robust

to shilling attack due to the regularization from trusters or experts. In comparison,

SoRec does not achieve comparable performance with SoReg and SocialMF, which

illustrates that the impact from the fake rating matrix overwhelms that from the

trust-link matrix, especially when the trust-link matrix is very sparse. RMRM-S

achieves better performance than that of the single S-HMF model because S-HMF

in RMRM-S is regularized by the empirical priors from C-HMF. Finally, we find

that C-HMF and RMRM-C achieve much better performance than other models.

In particular, the results of C-HMF and RMRM-C do not become worse as do the

other models in the case of tail items, which proves that the heteroscedastic modeling

for credibility is a very effective way to defend against shilling attack.
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Figure 8.11 : MAEs for head items and tail items with shilling attack.

8.6.3 Implicit Rating Data Evaluation

Data Preparation

With the popularity of mobile phones, millions of apps have been published

online, covering all aspects of daily life, including food, shopping, sports, games,

and so on. Popular apps (head items) are known by most users, so recommending

unpopular apps (tail items) to users is a more meaningful task. Here, we use a

publicly available data set of apps for Android from Amazon [147] to evaluate all

the compared methods. Since the installation history is always available in the app

store, for our experiment, we take the installation record as the implicit rating (with

the observed installation of an item as 1). From the raw data, we remove users who

have less than three installations and items that have less than four installations.

The statistics of this evaluation dataset are illustrated in Table 8.5.

Figure 8.12 shows the distributions of the number of installations w.r.t. users

and items of this evaluation set. We see that the number of installations w.r.t. both

items and users have obvious long-tail distributions. The hyperparameters of all the

compared methods have been tuned by cross-validation. We find that the length of
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Table 8.5 : Statistics of Apps for Android Dataset

# users: 234,347 # Apps: 24,141

# installations: 1,274,896 density: 0.023%

# installations / # users: 5.44 # installations / # items: 52.81

max # installations of user: 565 max # installations of item: 11,801
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Figure 8.12 : Long-tail distributions over the number installations w.r.t. users and

items (truncated).

the latent factor vector can produce good results with this dataset by setting K=50.

Moreover, we set α = 1, β = 1 for the reputation score, defined by Eq. 8.16.

This dataset does not provide explicit relationships between the users. Intu-

itively, the number of choices of common apps between two users can be used to

measure their similarity. Moreover, the choices on tail items better reflect user pref-

erences. Therefore, we find the top-K neighbors of user i by ranking the weighted

sum:
∑

v∈O(i,j){ψv|j 6= i} for all users except i, where ψv is defined by Eq. 8.42 and

O(i, j) is the set of common apps between i and j in the training set.

Evaluation of Tail Items Recommendation

For a real-world RS, generating an accurate list of attractive items for each user is

more meaningful than accurately predicting ratings because, of course, the final goal

of RSs is to find items desired by different users. In this experiment, we randomly
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hold out 20% of the observations from each item as the testing set, denoted as Ts20,

and use the remainder for the training set. As in the previous experiments, we split

Ts20 into four item groups according to the number of installations, namely Most

Popular, Less Popular, Shallow Tail, and Deep Tail.

Table 8.6 reports the mean AP@10, AP@20, nDCG@10, and nDCG@20 for test-

ing the items in each group. In the case of Most Popular, the results from all mod-

els are relatively close; this is due to the sufficient data of the head items. Overall,

RMRM models achieve better performance than the other models, which proves that

RMRM can better capture user preferences for tail items. In particular, RMRM-S

and S-HMF achieve better performance than the other models in the cases of Most

Popular and Less Popular, whereas RMRM-C and C-HMF outperform the others

in the cases of Shallow Tail and Deep Tail. This reflects the fact that the apps in

the tail are known by very few people, so that their installation and corresponding

feedback mainly come from two types of users: (a) users who really have interest

in these apps (i.e., valuable feedback), and (b) Internet marketers (i.e., valueless

feedback). Accordingly, the designs of RMRM-C and C-HMF emphasize the feed-

back from the former and de-emphasize the feedback from the latter. Furthermore,

RMRM-C incorporates the empirical priors from S-HMF for regularization, thus it

achieves the best performance for recommending items in the tail.

Figure 8.13 depicts the recall@20-50 curves for all compared models for recom-

mending tail items (Shallow Tail and Deep Tail). Similar to the performance shown

in Table 8.6, RMRM-based methods outperform the other approaches. Therefore, we

find that the curve of RMRM-C is above all the other models with obvious margins,

which, again, proves that RMRM-C can better capture users’ special preferences

and provide more robust protection against shilling attack.
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Table 8.6 : Mean AP@5, AP@10, nDCG@10, and nDCG@20 of item recommenda-

tions

Most Popular Less Popular

Method
AP nDCG AP nDCG

@10 @20 @10 @20 @10 @20 @10 @20

MF-IR 0.0135 0.0144 0.016 0.0195 0.0112 0.0121 0.0187 0.0222

SoRec-IR 0.0135 0.014 0.0162 0.0182 0.0111 0.0119 0.018 0.0216

SoReg-IR 0.0133 0.0141 0.0163 0.0191 0.0119 0.0128 0.0191 0.0231

SocialMF-IR 0.0144 0.015 0.0177 0.02 0.0119 0.0128 0.0195 0.0232

S-HMF 0.0149 0.0156 0.0184 0.0211 0.0123 0.0131 0.0199 0.0237

C-HMF 0.0126 0.0131 0.0157 0.0174 0.0107 0.0115 0.0175 0.0208

RMRM-S 0.0153 0.0159 0.0187 0.0212 0.0125 0.0132 0.0202 0.0239

RMRM-C 0.0131 0.0136 0.0161 0.018 0.0109 0.0116 0.0182 0.0213

Shallow Tail Deep Tail

Method
AP nDCG AP nDCG

@10 @20 @10 @20 @10 @20 @10 @20

MF-IR 0.0108 0.0096 0.0305 0.0331 0.012 0.0077 0.0362 0.0342

SoRec-IR 0.0108 0.0095 0.0302 0.0328 0.012 0.0076 0.0364 0.0338

SoReg-IR 0.0116 0.0103 0.0322 0.0349 0.0134 0.0086 0.0408 0.0383

SocialMF-IR 0.0111 0.0099 0.0315 0.0342 0.0128 0.0082 0.0396 0.0369

S-HMF 0.0129 0.011 0.0355 0.0373 0.016 0.0101 0.0475 0.0428

C-HMF 0.0171 0.014 0.0438 0.0438 0.0238 0.0151 0.0654 0.0578

RMRM-S 0.013 0.011 0.0356 0.0374 0.0165 0.0105 0.0485 0.0448

RMRM-C 0.0175 0.0142 0.0453 0.0445 0.024 0.0154 0.0659 0.0592
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Figure 8.13 : Recall@20-50 of tail-item recommendations for users.

Evaluation of Tail-users’ Recommendations

For a company, finding an accurate list of potential users to deliver the infor-

mation about their apps can reduce large promotion costs. In this experiment, as

before, we randomly hold out 20% of the observations from the users as the testing

set, denoted as Ts20, and use the remainder as the training set. In the same way

as the previous experiments, we split Ts20 into four user groups, i.e., Most Active,

Less Active, Shallow Tail, and Deep Tail, according to the number of apps that a

user has installed. Table 8.7 reports the mean AP@10, AP@20, nDCG@10, and

nDCG@20 when testing the users in each group. It is easily observed that RMRM-

based models are superior to the other models, and that RMRM-S achieves the best

performance in the case of Most Active while RMRM-C shows its advantage in the

other cases. Both heteroscedasticity modeling on credibility and regularization with

coupled empirical priors enable RMRM-C to capture the preferences of tail users

more precisely, thus RMRM-C more effectively recommends attractive apps to tail

users.

Figure 8.14 shows the recall@20-50 curves of all of the compared models when

recommending items for tail users (Shallow Tail and Deep Tail). Similar to the
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Figure 8.14 : Recall@20-50 of tail-user recommendations for users.

prediction performance for tail users, as shown in Table 8.7, the recall curves of the

RMRM approach are above those of other models, which proves that the features

learned from RMRM can more reliably represent the traits of items and the personal

preferences of users.

8.7 Summary of Contributions

In this chapter, we model a multi-objective RS to address the challenges of

recommendations for long-tail items and users. In particular, the non-IID technique

is focused on modeling the coupling relationships between group members for making

group choices. The main contributions of this work are summarized as follows:

• We analyze the vulnerabilities of current approaches for tail items and users as

they pertain to the challenges of popularity bias, cold start, and shilling attack.

As a result, we establish a pair of coupled objectives to jointly emphasize the

specialty of choices and assess the credibility of feedback.

• We design a recurrent mutual regularization process to couple the two ob-

jectives, namely specialty and credibility, which are modeled by S-HMF and

C-HMF. To implement the recurrent mutual regularization process for RMRM,
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Table 8.7 : Mean AP@5, AP@10, nDCG@10, and nDCG@20 of user recommenda-

tions

Most Popular Less Popular

Method
AP nDCG AP nDCG

@10 @20 @10 @20 @10 @20 @10 @20

MF-IR 0.0516 0.0555 0.0693 0.0834 0.0484 0.0522 0.0646 0.0787

SoRec-IR 0.0515 0.0553 0.0693 0.0832 0.0472 0.051 0.0632 0.0768

SoReg-IR 0.0572 0.0614 0.0762 0.0917 0.0516 0.0555 0.0692 0.0835

SocialMF-IR 0.0567 0.0609 0.0762 0.0916 0.0511 0.0551 0.069 0.0836

S-HMF 0.0608 0.065 0.0805 0.0959 0.0554 0.0594 0.0735 0.0882

C-HMF 0.06 0.064 0.079 0.0936 0.0556 0.0594 0.0734 0.0874

RMRM-S 0.0614 0.0655 0.082 0.097 0.0551 0.0593 0.0737 0.0893

RMRM-C 0.0607 0.0648 0.08 0.095 0.0564 0.0604 0.0744 0.0891

RMRM-C 0.0131 0.0136 0.0161 0.018 0.0109 0.0116 0.0182 0.0213

Shallow Tail Deep Tail

Method
AP nDCG AP nDCG

@10 @20 @10 @20 @10 @20 @10 @20

MF-IR 0.0414 0.0455 0.0637 0.0793 0.0313 0.0352 0.0631 0.0802

SoRec-IR 0.0419 0.0459 0.0644 0.0798 0.0312 0.0351 0.0631 0.08

SoReg-IR 0.0459 0.0502 0.0711 0.0876 0.0347 0.039 0.0699 0.0881

SocialMF-IR 0.0466 0.0508 0.0713 0.0876 0.0355 0.04 0.0711 0.0899

S-HMF 0.0503 0.0546 0.0764 0.093 0.0389 0.0433 0.0768 0.095

C-HMF 0.052 0.0559 0.0779 0.0943 0.042 0.0466 0.0832 0.1025

RMRM-S 0.05 0.0545 0.0763 0.0932 0.0384 0.043 0.0774 0.0964

RMRM-C 0.0522 0.0563 0.0786 0.0946 0.0421 0.0468 0.0833 0.103
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we design a scalable algorithm based on the variational Bayesian method to

efficiently learn its parameters.

• We conduct empirical evaluations on two real-world data sets. Based on vari-

ous evaluation metrics, the overall results prove that our approach significantly

outperforms the comparison methods.

• RMRM provides a general framework to couple multiple objectives and to

learn the comprehensive latent features. Although we focus mainly on the

recommendation for long-tail users and items, the proposed approach could

potentially be applied to many other recommendation problems where multiple

objectives are modeled.
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Chapter 9

Attraction-based Recommender Systems for

Capturing and Interpreting User Attraction in

Content

9.1 Introduction

With the rise of new media, a large amount of social media posts, news articles,

and online videos are produced in the cyberspace. In recent years, more and more

platforms of content creation, aggregation and distribution have emerged, which

aims to attract users with the tailored feed list of content for more traffic. For

example, Toutiao is the largest mobile content platform in China, with 120 million

daily active users as of Sep. 2017. A similar situation also happens in academia,

electronic preprints, known as e-prints, of scientific papers have become the most

prevalent way to deliver new ideas or new applications to the public without a

long peer review process. The most notable example is arXiv where more than

1.3M e-prints are openly accessible till Jan. 2018∗. Researchers around the world

submit thousands of new e-prints to deliver their new work in every day. Ambitious

researchers would like to promptly obtain the first-hand information from these new

e-prints to inspire them and promote their research. However, most researchers

often obtain the second-hand information about some new articles from the blogs

that they followed.

The current RSs may suggest users with potentially interested articles according

to similar users’ history by such techniques as CF. However, CF does not work in

∗https://arxiv.org/stats/monthly submissions
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points on an article [199]

the cold-start cases, namely, on those articles that have not been followed by any

other users. To some extent, it actually recommends the second-hand information

for a target user since CF can only recommend articles when other users have read

them. To overcome this CF deficiency for new articles, content-based filtering (CBF)

approach [43] finds articles per the semantic similarity. In fact, users often read

an article because they are attracted by a very small point, e.g., the name of a

person in a news, an interesting keyword in a paper or some touching words in a

song. However, current CBF approaches cannot interpret the most attractive point

leading to user selection. Besides interpreting recommendation, we propose to model

and infer the attraction on content in this chapter. Then, what is the specialty of

attraction modeling? First, the attraction is the highlights that largely lead to a

person’s selection and decision. For example, we often cannot recite a whole poem

but we can always recall some impressive sentences; similarly, we may not remember

a whole song but we can hum some touching lyrics. These highlights make a person

to be attracted by the poem or the song. Second, the attraction is a subjective
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feeling which is often different from person to person. For example, as illustrated in

Figure 9.1, readers in Go community may be attracted by the target problem, i.e.,

Go playing, of this scientific paper while readers in AI community may be attracted

by the technical methods. In this case, finding the attractive points is obtaining the

strong evidence to interpret why a person likes an article.

Attention mechanism has been shown effective in various tasks such as machine

translation [8] and image captioning [221]. Its underlying assumption is that one

only focuses on selective parts where as needed. Obviously, attention mechanism

shares some common assumption with attraction modeling. Yang et al. [242] pro-

posed hierarchical attention networks for document classification, where two levels

of attention mechanisms are respectively applied at the word and sentence level,

enabling it to attend to more or less important content when constructing the doc-

ument representation. Denil et al. [46] use CNN to transform word embeddings in

each sentence into an embedding for the entire sentence. At the document level,

another CNN is used to transform sentence embeddings into a document embed-

ding vector. These methods try to find salient words or sentences from documents

without considering personal factors. However, these attentive words and sentences

do not mean the attractive words and sentences to all users since each user may

have quite different backgrounds. Therefore, the main difference is that attention

mechanism puts focus on salient parts of a content in an objective way ignoring user

difference, whereas attraction modeling tries to capture user’s subjective focus on

content elements from a personal view with considering user features.

In fact, attraction modeling has many potential application areas. For example,

users may be unable to read hundreds of papers of a conference. Then, attraction

modeling can serve as a personal machine reading assistant for pre-reading articles

for each user and undertake personalized filtering. Meanwhile, attraction models

can serve as a text extractor to digest sentences which are most attractive to a user.
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As a result, users can have a quick selection in terms of scanning the attractive

sentences provided by the attraction model only in a small set of filtered articles.

To formally implement attraction modeling, we design a framework to quanti-

tatively score the user’s attractiveness over content elements. Enhancing with this

framework, content-based RSs are able to provide interpretation on user behavior

and recommendation results. In this chapter, we study two representative attraction

models, which respectively model two major types of content on the internet. First,

we study the multilevel attraction, i.e. word-level, sentence-level and document-level

attraction, over textual content, e.g. posts and news articles. As a result, we de-

sign a hierarchical attraction model (HAM) to capture user’s multilevel attraction.

Second, we take movies as the representative case to study multimodal attraction

modeling since internet movies have accounted for the major traffic in this new me-

dia age. We know that the story and the cast members, e.g., actors, directors, and

writers, are two most important aspects of a movie to attract the audience. We build

a multimodal attraction model (MAM) to comprehensively capture user attraction

over both story content and cast content.

9.2 Attraction Model

Attraction model is the key component to detect and interpret users’ preferences.

Before integrating the attraction model into RSs, we first present its architecture

without associating with some specific recommendation tasks.

For modeling attraction, two basic elements are needed to model: (1) the con-

tent element set of a target object and (2) the filter to capture user’s attraction

on content. Before introducing the details of model architecture, we define basic

notations in attraction modeling. We denote O = {o1, · · · , o|O|} as the object set,

and Wo = {wo,1, · · · , wo,|Wo|} is the content element set of an object o ∈ O. For

example, Wo denotes the word sequence of sentence o. The user set is denoted as
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Figure 9.2 : Architecture of Attraction Model

U = {u1, · · · , u|U|}. Given a user u ∈ U , we denote Fu = {fu,1, · · · , fu,Fu} as u’s re-

lated features, e.g. personal demographics and/or some contextual features. Given

the content element set Wo of an object o, the goal of attraction model is to score

the attractiveness over each wo,i ∈ Wo.

The architecture of attraction model is illustrated in Figure 9.2, which consists

of three main modules: MU : Attraction Filter module, MC : Content Representation

module and MA: Attractiveness Score module.

9.2.1 Content Representation Module

As illustrated in Figure 9.2 (MC), this module focus on modeling the represen-

tations of the content elements. Given the content element set Wo of an object o,
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we feed them into a representation model to obtain corresponding high-level repre-

sentations {hWo,1, · · · ,hWo,N}.

For example, we can use a pre-trained word embedding model [171] as the rep-

resentation model to map the words of a sentence into the corresponding word

embeddings. Given an image, we can use CNN to detect the objects in this image

and output their feature maps [174].

9.2.2 Attraction Filter Module

As illustrated in Figure 9.2 (MA), this module focus on modeling the personal

filter of user attraction over the content. First, we give the formal definition of

Attraction Filter.

Definition 9.1: (Attraction Filter) An attraction filter is a vector fu, which is

used to differentiate user u’s attraction over the representation vector hWo,i of each

content element wo,i ∈ Wo.

In general, an attraction filter reflects the user’s preferred focus on content,

which is relevant to user features, e.g. age, gender, and occupation. We denote

all these observed features as Fu. However, not all user features can be collected,

for example, due to the reason of privacy. Therefore, we associated with a latent

feature vector, hEu , to represent the user’s observed features. hEu is often called

user embedding in neural network models. To capture the high-level semantics and

coupling relationship between observed features, we often use generate a continuous

vector representation for Fu. More specifically, hFu = rW(Fu), where rW(·) specifies

some representation model with the parameters W. Typically, rW(·) is modeled by

a multilayer perceptron (MLP) [98].

Based on hFu and hEu , we can construct the attraction filter vector fu of useru.
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Typically, it has the following form:

fu = fW(hFu ⊕ hEu ) (9.1)

where ⊕ denotes some merge operation over hFu and hEu , e.g. concatenation, plus

or element-wise product, fW is a function with the parameters W, which can be

typically modeled by MLP, for example, fu = a(W[hFu ⊕ hEu ]) defines a two-layer

neural network where a(·) is an activation function.

9.2.3 Attractiveness Score Module

To capture user’s attraction, we build an attractiveness score module to weight

the interaction strength, i.e. attractiveness, between attraction filter fu and content

element representations {hWo,1, · · · ,hWo,N}. As illustrated in Figure 9.2 (MA), the

attraction representation au,i is modeled by the following function:

au,i = gW(fu ⊗ hWo,i) (9.2)

where ⊗ denotes some operation between fu and ho,i, e.g. concatenation or element-

wise product, gW defines a function with the parameters W, which is typically

modeled by MLP, namely, au,i = MLPW(fu ⊗ hWo,i).

So far we obtain the attraction representation au,i which reflects user u’s attrac-

tion on the content element wo,i. Then, we use the following function to quantify

the attractiveness score based on au,i.

ASu,i = sw(au,i) (9.3)

where sw(·) is a score function map the attraction representation to a scalar value,

i.e. ASu,i ∈ R. Typically, sw(au,i) = w>au,i + b is a linear function, where w ∈ RA

and b is the bias.

The normalized attractiveness score can be computed by

ĀSu,i = softmax(ASu,i) =
eASu,i∑
j e

ASu,j
(9.4)
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However, ASu,i in Eq. 9.3 can be arbitrarily large, which makes softmax to output

a weight close to 1 on the maximum ASu,i. Furthermore, a large ASu,i easily makes

the exponential function overflow in implementation. To resolve this problem, we

impose an inverse squared root function to bound the value of ASu,i in this work.

isrα(x) =
x√

1 + αx2
(9.5)

We can easily verify that isr(x) has the range (−α− 1
2 , α−

1
2 ), so the parameter α

can be used to control the upper bound and lower bound. A large α makes the upper

bound and lower bound close to 0. As a result, the softmax tends to output uniform

weights. A small α around 0.001 has the range (−31.6, 31.6) which guarantees the

exponential function not to overflow and softmax tends to output a single large

weight. Then we have the following adjusted attractiveness score:

ĀSu,i = softmax(isrα(ASu,i)) (9.6)

The attractiveness scores statistically quantify the user’s attraction on the given

content elements. These scores enable to find the most attractive content elements

and interpret the attractive points that result in user selection. Therefore, we can

instantiate this attraction modeling framework to build interpretable content-based

RSs.

9.3 Hierarchical Attraction Model on Textual Content

In the previous section, we have presented the framework of attraction model.

In this section, we focus on applying the attraction model on textual content. Note

that the term “article” is used to refer to textual content, e.g., a post, a news item,

or an academic paper.

When a person is reading an article, s/he may be caught by some attractive

words in a sentence, e.g., a person’s name or an interesting keyword. Moreover,
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a person often likes an article due to a few attractive sentences instead of every

sentence. Obviously, this implies a hierarchical attraction modeling on an article,

from the word-level attraction to the sentence-level attraction, and to the document-

level attraction. According to these analyses, we build a hierarchical attraction

model (HAM) to capture personal attraction on textual content. However, the data

in the real world often has a long-tail distribution, for example, most users only

associate with very few observed choices on articles (i.e., users in the long tail).

With insufficient data, we cannot learn user preference and infer the attractive

points for them. To relieve this deficiency, we propose to learn personal attraction

regularized by group attraction.

9.3.1 Multilevel Attraction

We denote D = {d1, · · · , dN} as an article set. For each article d ∈ D, it consists

of a sequence of Nd sentences, Sd = {s1, · · · , sNd
}. For each sentence s ∈ Sd, it

consists of Ns sequential words, {ws,1, · · · , ws,Ns}. We denote the user set as U to

model their attraction on articles, and G as all user groups. In particular, each

user belongs to a user group g ∈ G. Then, the users in group g is denoted as

Ug = {ug,1, · · · , ug,Ng}. Given a user u ∈ Ug, his user profile about previously liked

articles is denoted Du = {du,1, · · · , du,Nu}. Given an article liked by du,i ∈ Du,

the goal of this work is to capture personal word-level attraction, sentence-level

attraction and document-level attraction for each user.

9.3.2 Bidirectional Gated Recurrent Units

GRU [36] are a gating mechanism in RNN. It combines the forget and input

gates into a single “update gate” and merges the cell state and hidden state. The

resulting model is simpler than standard LSTM [80] models, and has been growing

increasingly popular. The architecture of GRU and the corresponding update rule
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is given as follows:

zt = σ(Wz[ht−1,xt])

rt = σ(Wr[ht−1,xt])

h̃t = tanh(W[rt ∗ ht−1,xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

where σ(x) = 1/(1 + exp(−x)) is sigmoid function, zt denotes update gate vector,

rt denotes reset gate vector, xt denotes input vector and ht denotes output vector,

{Wz,Wr,W, } are the weight matrices.

Bidirectional GRU (BiGRU) [36] consists of two GRU-based recurrent neural

networks, where the forward
−−−→
GRU outputs a vector,

−→
hWi , with preserving the pre-

ceding subsequence information while the backward
←−−−
GRU outputs a vector,

←−
hWi ,

with containing the successive subsequence information.

−→
hWi =

−−−→
GRU(wi), i ∈ {1, · · · , Ns} (9.7)

←−
hWi =

←−−−
GRU(wi), i ∈ {Ns, · · · , 1} (9.8)

Then,
−→
hWs,i and

←−
hWs,i can be combined together as a joint representation, e.g. hWs,i =

[
−→
hWs,i,
←−
hWs,i] through the concatenation.

9.3.3 Model Architecture

The architecture of HAM is illustrated in Figure 9.3, where we build a hierarchi-

cal model to capture user attraction on different levels of an article, from the words

to the sentences, and then to the document.

Different from the current hierarchical document representation [242] without

considering subjective factors, our model aims to generate personally attraction-

based document representation by considering the difference of attraction between

persons. Especially, we design a bottom-up hierarchical attraction model (HAM). It
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Figure 9.3 : The architecture of hierarchical attraction model

first scores the attractiveness of each word in a sentence and then encodes a sentence

based on these attraction-biased word representations. Recursively, HAM encodes a

document based on the generated sentence representations weighted by their attrac-

tiveness. More specifically, HAM first generates personally attraction-based sentence

embeddings by aggregating word embeddings weighted by the word-level attraction

filters (as shown in the bottom of Figure 9.3), and then it produces a personally

attraction-based document embedding based on the personally attraction-based sen-

tence embeddings (as shown in the middle of Figure 9.3). With the attractiveness

scores, this attraction-based encoding process can be employed to analyze personal

attraction over the content elements of each level. In the following subsections, we

present more technical details about this model.

9.3.4 Multilevel Attraction Filters

To capture user attraction over the content elements at each level, we corre-

spondingly create the following attraction filters, as illustrated in the left part of

Figure 9.3.
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• Word-level attraction filter: Given a sequence of words of a sentence s

in an article du,i, we use a word-level attraction module to score personal

attraction on each word w ∈ s in terms of learning a user attraction filter

fWu ∈ RL over the word embedding w ∈ RL.

• Sentence-level attraction filter: Given a sequence of sentences in an article

du,i, we use a sentence-level attraction module to score personal attraction on

each sentence s ∈ du,i in terms of learning a user attraction filter fSu ∈ RK over

the sentence embedding s ∈ RK .

• Document-level attraction filter: Given a collection of candidate articles

Dc, we use a document-level attraction module to score user preference on

each article d ∈ Dc in terms of learning a user attraction filter fdu ∈ RM over

the document embedding d ∈ RM .

In consideration of the real-world data distribution, most data often follow power-

law or long-tail distribution [85]. That is, the majority of users are often associated

with few data and only the minority of users have sufficient data. Without sufficient

data, a model may fail to learn users’ attraction. To relieve this deficiency, we incor-

porate group-level features [84] when modeling user attraction filter. In particular,

we can associate each user with a predefined group. Normally, there are several

ways to group users: (1) groups can be assigned according to some observable user

features, e.g., occupations, when we want to study the group preference about that

feature; (2) we can generate groups according to social networking, e.g., coauthoring

network, when social influence is heavy on the users’ choice; (3) we can cluster users

into groups according to the similarity on observed data.

Given user u, we treat his/her assigned group g as the observed feature of u,

i.e. Fu = {g}, as defined in Section 9.2.1. As presented in Section 9.2.2, we have

the user embedding hEu , and a group embedding hFg can be associated with group
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g. Then, we apply the plus operation to merge hFg and hEu . As a result, we obtain

the following:

hu = hFg + hEu (9.9)

where hEu is regularized by L2-norm λ||hEu ||22. Therefore, hu serves as a group-

regularized user embedding. The regularization parameter controls the shrinkage of

hEu toward zeros, i.e., it controls how close is hu to hFg . A very small λ places tiny

regularization on hEu so hu can have arbitrarily large values, namely it bypasses the

effect of hFg . On the contrary, a very large λ tightly shrinks hEu to zeros, therefore

hu tends to be fully determined by hFg .

As a result, we create three attraction filters, fWu to model user attraction on

words, fSu to model user attraction on sentences, and fDu to model user attraction on

documents, as shown in the left part of Figure 9.3.

fWu = ReLU(WWhu + bW ) (9.10)

fSu = ReLU(WShu + bS) (9.11)

fDu = ReLU(WDhu + bD) (9.12)

where {WW ,WS,WD} are weight matrices of the rectifier neural networks and

{bW ,bS,bD} are the corresponding bias vectors.

9.3.5 Hierarchical Attractive Content Encoder

Encoding Sentence via Attractive Words

Scoring attractiveness over words: Given a sequence of words {ws,1, · · · , ws,Ns}

of a sentence s in article du,i liked by user u, we aim to find the most attractive words

to u, and then we can encode a personally attraction-based sentence representation

based on the word embedding vectors weighted by the attractiveness scores over

them.
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Given a sentence, we map each word ws,i into a word embedding wi as illustrated

in the bottom-right part of Figure 9.3. Then, we feed this word embedding sequence

{w1, · · · ,wNs} into a BiGRU-based RNN. The forward
−−−→
GRU outputs a recurrent

word embedding with preserving the preceding subsequence information while the

backward
←−−−
GRU outputs a recurrent word embedding with containing the successive

subsequence information.

−→
hWi =

−−−→
GRU(wi), i ∈ {1, · · · , Ns} (9.13)

←−
hWi =

←−−−
GRU(wi), i ∈ {Ns, · · · , 1} (9.14)

The joint recurrent word embedding is set as the concatenation of
−→
hWi and

←−
hWi , i.e.

hWi = [
−→
hWi ,
←−
hWi ].

Then, we feed the word-level attraction filter fWu and each word embedding hWi

into the attractiveness score module. In this module, the attraction representation

is modeled by a tanh neural network.

aWi = tanh (WW [fWu ,h
W
i ] + bW ) (9.15)

Accordingly, the normalized attraction weights are give as follows:

ĀS
W
i = softmax(isrα=4(wW>aWi + bW )) (9.16)

where we set α = 4 which can achieve good performance in our experiments.

Attraction-based sentence encoding: The sentence representation should

preserve the most information from attractive words to user u in a sentence. Since

the {ĀSWi } weights the personal attractiveness, the sentence embedding s is encoded

as the mixture of recurrent word embeddings weighted by their attractiveness:

s =
Ns∑
i=1

ĀS
W
i hWi (9.17)
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Encoding Document via Attractive Sentences

The attraction-based sentence embedding for all sentences of article du,i can be

obtained from the above sentence encoding module. Then, we can build a document

encoding module on these sentence embedding vectors. As shown in the middle-

right part of Figure 9.3, the architecture of personally attraction-based document

encoding module is similar to the sentence encoding module.

Scoring attractiveness over sentences: We input the sequence of attraction-

based embedding {s1, · · · , sNd
} for all sentences into BiGRU networks to generate

a recurrent sentence embedding which preserves the information of both preceding

sentence sequence and successive sentence sequence.

−→
hSi =

−−−→
GRU(si), i ∈ {1, · · · , Nd} (9.18)

←−
hSi =

←−−−
GRU(si), i ∈ {Nd, · · · , 1} (9.19)

hSi = [
−→
hSi ,
←−
hSi ] denotes the concatenated recurrent sentence embedding.

Given the sentence-level attraction filter, fSu , and recurrent sentence embedding

sequence {hS1 , · · · ,hSNd
}. The normalized attraction weights are computed over each

sentence attraction representation aSi :

aSi = tanh (WS[fSu ,h
S
i ] + bS) (9.20)

ĀS
S
i = softmax(isrα=1(wS>aSi + bS)) (9.21)

Attraction-based document embedding: Similar to sentence encoding with

the most attractive words, the document representation should preserve the infor-

mation of attractive sentences. As a result, we build the attraction-based document

embedding are encoded with the recurrent sentence embeddings weighted per their

attractiveness:

d =

Nd∑
i=1

ĀS
S
i hSi (9.22)
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Document Attractiveness Scoring

Measuring the document-level attractiveness over all documents is similar to

attraction scoring over words and sentences. Given the document-level group-

regularized user attraction filter, fDu , and the candidate document embeddings

{du,1, · · · ,du,N}, the attractiveness scores on each article di can be computed by:

aDi = tanh (WD[fDu ,h
D
i ] + bD) (9.23)

Sdu,i = wD>aDi + bD (9.24)

9.3.6 Objectives and Parameter Learning

Loss for Explicit Preference Data

When users provide explicit feedback to differentiate their preferences on content,

e.g., like or dislike on an article, we can treat it as a classification problem. Typically,

we consider the binary preference label, i.e., like/dislike, on articles, and then the

loss function is given as the binary cross entropy:

L(yu,i, ŷu,i) = −yu,i log(ŷu,i)− (1− yu,i) log(1− ŷu,i)) (9.25)

where ŷu,i = σ(Sdu,i) and σ(·) is the logistic function, yu,i denote the true labels, i.e.,

yu,i = 1 for like and yu,i = 0 for dislike.

Loss for Implicit Preference Data

In many real-world scenarios, explicit preference data are not available; instead,

browsing record, click logs, are much more easily obtained. In such cases, we only

have one-class preference data [87], which cannot be applied with a classification

loss for optimization. To learn with one-class preference data, it is often treated as

ranking problem [178]. More specifically, we construct contrastive pairs to specify

the preference order, that is, we have the order du,i � du,j over a u liked article
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Algorithm 3 The mini-batch learning for classification

1: B ← GetMinibatch({Mu}) from all user-article pairs

2: {Sdu,i} ← Compute scores for du,i ∈ B (cf. Eq. 9.24)

3: Compute mean mini-batch loss using Eq. 9.25:

4: LB ← 1
|B|
∑
{Sdu,i

} L(yu,i, ŷu,i)

5: Update parameters: Θ← Θ− ΓAdam(∇ΘLB)

(du,i ∈ Du) and a randomly selected article (du,j /∈ Du). Then, we use the following

loss to optimize ranking:

L(du,i � du,j) = max(0,m+ Sdu,j − Sdu,i) (9.26)

This loss function is a variant of the hinge loss named max-margin loss [121], where

m is a parameter to define the maximum margin and we find that m = 20 produces

good results in our experiments.

Implementation and Training Procedure

We implemented HAM using Keras [37] with the backend of Tensorflow GPU

version. We initialize the word embeddings for each article with the pre-trained

GloVe vectors [171]. Due to the limited space, we only list a brief scheme of the

training procedure in Algorithm 3 for classification and Algorithm 4 for ranking on

a mini-batch. For the gradient descent optimizer, we adopt ΓAdam(·).

9.4 Multimodal Attraction Model on Movies

In the previous section, we present the hierarchical attraction modeling, which

is suitable to study user attraction on textual content, such as post, news, and

academic papers. In some other cases, users may be attracted by multiple types of

content of an object. For example, the story and the cast members, e.g., actors,

directors, and writers, are two most important aspects of a movie to attract the
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Algorithm 4 The mini-batch learning for ranking

1: Bp ← GetMinibatch({Mu}) from all user-movie pairs

2: Bn ← Sample contractive article du,j for each du,i ∈ Bp

3: {〈Sdu,i , Sdu,j〉} ← Compute score pairs for each

4: 〈du,i, du,j〉 ∈ 〈Bp,Bn〉 (cf. Eq. 9.24)

5: Compute mean mini-batch loss using Eq. 9.26:

6: L〈Bp,Bn〉 ← 1
|〈Bp,Bn〉|

∑
{〈Sdu,i

,Sdu,j
〉} L(du,i � du,j)

7: Update parameters: Θ← Θ− ΓAdam(∇ΘL〈Bp,Bn〉)

audience. As a result, we need to jointly model the user attraction over two content

element sets w.r.t. story and cast.

The internet video stream has accounted for the major traffic in this new media

age. Tn this section, we take movies as the representative case to study multi-

modal attraction modeling. On one hand, when a person reads the story of a movie,

s/he may be caught by some attractive words in a sentence. Moreover, only a few

sentences of the core plot instead of all sentences may actually attract the user’s at-

tention. Accordingly, we build a hierarchical attraction model on the story (textual

content) to capture word-level, sentence-level, and story-level attraction. On the

other hand, cast members (categorical content) of a movie are another important

factor to attract users so we build another attraction model to weight the attrac-

tiveness over each cast member and generate a representation of the whole cast.

At the top level, we create a joint representation of story and cast representation

to score attractiveness. Due to the complementation of story (textual data) and

cast members (categorical data), we build a multimodal attraction model (MAM)

to integrate the information from both types of content data to comprehensively

capture user attraction.
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9.4.1 Multimodal Attraction

We denote the movie set as M = {m1, · · · ,mN}. For each movie m ∈ M, it

consists of a textual story, St, and a set of cast members Cm = {c1, · · · , cNm}. For

each story St, it consists of Nt sentences, St = {s1, · · · , sNt}. For each sentence

s ∈ St, it consists of a set of Ns words, {ws,1, · · · , ws,Ns}. We denote the user set as

U to model their attraction on movies. Given a user u ∈ U , her user profile about

previously liked movies is denoted Mu = {mu,1, · · · ,mu,Nu}.

Given a movie m ∈Mu, one of our tasks is to learn the attractiveness over words

for each sentence, and the attractiveness over sentences of the story St from user u’s

perspective and generate story-level representation hT . Another task is to weight

the attractiveness on the cast members Cm and generate attraction-based cast-level

representation hC . Then, we can use hT and hC to score the attractiveness on movie

m. When the parameters of attraction model are learned, we can compute personal

attractiveness scores over a set of candidate movies MC for recommendation and

interpret the recommendation with the highlighted sentences of the story and which

actors may attract the target user.

9.4.2 Model Architecture

The overview of the architecture of MAM is illustrated in Figure 9.4. This model

consists of three main parts: cast content (left), attraction filters (middle) and

story content (right). Since movie story is textual content, we build a hierarchical

attraction model, similar to the model introduced in the previous section, to score

attractiveness over words and sentences for each user. Moreover, we build another

attraction model to score attractiveness over cast members. Finally, we compute

the personal attractiveness score of a movie on the top of these modules using the

cast-level embedding and the story-level embedding.

Different from the HAM presented in the previous section to model a sentence in



250

   Cast Content                                                                                      Story Content                        Attraction Filters

Sentence
Encoder

Story
 Encoder

hTu

ASSu

fW

fS

u

Word-level
Attraction Filter

w1 wNs

hSu,1 hSu,2 hSu,3 ... hSu,Nt

w1 w2 w3 ... wNs

Σ

Σ

ASWu

Story Level

Word
Attractiveness

Cast Encoder

c1 ... cNm

hCu

Σ
ASCu

fC

cu

fM

Cast
Attractiveness

Cast Level

su sg

Σ

Σ

tu tg

Sentence-level  
Attraction Filter

Member-level
Attraction Filter

Σ

S

cg

MLP
ISR

softmax

MLP
ISR

softmax

MLP
ISR

softmax

Member Level
w2 w3 ...

Sentence
Attractiveness

c2 c3
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terms of a sequence of words with BiGRU-based RNN, we do not assume the sequen-

tial order over words. Instead, we assume the bag-of-words (BoW) model over the

words in a sentence without considering their order. Under such an assumption, we

can construct similar attraction modeling on both textual content and cast content

by treating both of them as a set of unordered content elements. In the following

subsections, we give more technical details about these modules.

9.4.3 Story Attraction Module

Sentence Encoder with Word Attraction Filters

Given a set of words {w1, · · · , wNs} of a sentence s in story St of movie mu,i liked

by user u, we aim to score the attractiveness over words from u’s perspective. First,

we map each word wi into a word embedding vector wi. Then, we feed these word

embedding vectors {w1, · · · ,wNs} into the word-level attractiveness score module

(illustrated in the overlapped part of user module and story attraction module in

Figure 9.4). We use hEu to denote the user embedding of u. In this model, we do

not consider additional explicit user features. As a result, we obtain the word-level
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user attraction filter:

fWu = ReLU(WWhEu + bW ) (9.27)

In MAM, we simply compute the attractiveness score ASWu,i in terms of the inner

product between fWu and each word embedding wi

ASWu,i = fW>u wi (9.28)

Accordingly, the normalized attractiveness score on word wi is

ĀS
W
u,i = softmax(isrα=4(ASWu,i)) (9.29)

α = 4 performs good in our experiments.

Then, we can obtain the attraction-based sentence embedding su by weighted

sum over word embedding vectors using ĀS
W
u,i.

su =
Ns∑
i=1

ĀS
W
u,iwi (9.30)

In HAM, we use BiGRU to model word sequence, the recurrent word embedding

preserve preceding and successive information (cf. Eqs. 9.13 and 9.14). In compar-

ison, su in this model only encodes the information from the most attractive words

and discards the information from unattractive ones due to the BoW assumption.

If a long sentence only contains one attractive word, the word-level attraction filter

assigns a large weight on this word to encode the whole sentence, even though this

sentence is not attractive as a whole. If such sentence embeddings are passed to the

upper level, the sentence-level attraction filter cannot differentiate which sentences

are more attractive due to the loss of information from unattractive words in the

original sentences. To measure the overall attractiveness of the sentence s at the

sentence level, we need to preserve the major information of a sentence apart from

the most attractive part encoded by su. Therefore, we use another neutral-attraction

filter gW to extract the major information over all words.

ĀS
W
i = softmax[isrα=32(gW>wi + bW )] (9.31)
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The filter weights are computed similar to user attractiveness (cf. Eq. 9.29), where

the major difference is that the weight vector g and the bias bW are user independent

and α of isr is set to 32 to keep relatively uniform information for all words. As a

result, the neutral-attraction sentence embedding sg is encoded:

sg =
Ns∑
i=1

ĀS
W
i wi (9.32)

Then, we concatenate the attraction-encoded sentence embedding and the neutral-

attraction sentence embedding, [su, sg], and input it into the tanh neural network

layer to jointly encode su and sg into a comprehensive sentence encoding hSu with

the parameters WS and bS

hSu = tanh(WS[su, sg] + bS) (9.33)

Story Encoder with Sentence Attraction Filters

Once we obtain the attraction-based sentence embeddings (cf. Eq. 9.22) for

all sentences of the story St from the sentence encoder as presented above, we can

build a story encoder over these sentence embedding vectors at the sentence level.

As shown in the right part of Figure 9.4, the structure of attraction-based story

encoder is very similar to the sentence encoder. Therefore, we briefly introduce this

story encoder in this subsection.

Given the sentence-level attraction filter, fSu , induced from user embedding hEu ,

the attractiveness scores over each sentence embedding vector hSu,i ∈ {hSu,1, · · · ,hSu,Nt
}

is given by

fSu = ReLU(WShEu + bS) (9.34)

ASSu,i = fS>u hSu,i (9.35)

Accordingly, we can obtain the normalized attractiveness score āSu,i on each sentence

embedding and the corresponding attraction-based story embedding tu:

ĀS
S
u,i = softmax(isrα=2(aSu,i)) (9.36)



253

tu =
Nt∑
i=1

ĀS
S
u,ih

S
u,i (9.37)

where α = 2 is set through experiments. Apart from encoding the most attractive

sentences, we use the neutral-attraction story embedding to preserve other informa-

tion of the story for the follow-up movie-level attraction scoring.

ĀS
S
i = softmax[isrα=16(gShSu,i + bS)] (9.38)

tg =
Nt∑
i=1

ĀS
S
i hSu,i (9.39)

Then, the comprehensive story embedding hTu is encoded with the parameters

WT and bT :

hTu = tanh(WT [tu, tg] + bT ) (9.40)

9.4.4 Cast Attraction Module

The architecture of cast attraction module is similar to the story attraction mod-

ule. First, we map the cast members {c1, · · · , cNm} of the movie mu,i into embedding

vectors {c1, · · · , cm}. Given the user attraction filter fCu , the attractiveness score

over each cast members is:

fCu = ReLU(WChEu + bC) (9.41)

ASCu,i = fC>u ci, i ∈ {1, · · · , Nm} (9.42)

Accordingly, the normalized attractiveness score āCu,i and the attraction-based cast

embedding cu w.r.t. user u are given:

ĀS
C
u,i = softmax(isrα=1(ASCu,i)) (9.43)

cu =
Nm∑
i=1

ĀS
C
u,ici (9.44)

For the follow-up movie-level attraction scoring, we need to preserve the overall

neutral-attraction cast information besides the attractive cast member embedding
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as done in the story attraction module.

ĀS
C
i = softmax[isrα=16(gCci + bC)] (9.45)

cg =
Nm∑
i=1

ĀS
C
i ci (9.46)

Finally, we obtain the comprehensive cast embedding hCu , which is encoded with

the parameters WC and bC

hCu = tanh(WC [cu, cg] + bC) (9.47)

9.4.5 Multimodal Movie Attraction Scoring

After we obtain the comprehensive story embedding hTu from story attraction

module and the comprehensive cast embedding hCu from cast attraction module.

We concatenate them as the joint multimodal movie embedding [hTu ,h
C
u ]. Then, the

attraction scores on the movie m can be computed with the user’s movie-level filter

fMu over [hTu ,h
C
u ]:

Smu = fM>u [hTu ,h
C
u ] (9.48)

9.4.6 Objective and Parameter Learning

Ranking Loss

In this case, it is also typical one-class preference data. Therefore, we treated

it as a ranking problem as discussed in Section 9.3.6. Given a user u, we construct

a contrastive pair to specify the attractiveness order, that is, we have the order

mu,i � mu,j over a movie (mu,i ∈ Mu) explicitly selected by u and an unselected

movie (mu,j /∈Mu). Then, we use the max-margin loss [121] to optimize the ranking

order over pairs:

Lmu,i�mu,j
= max(0,margin+ Smu,j

− Smu,i
) (9.49)

where the parameter margin needs to be tuned over data.
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Algorithm 5 The learning procedure for a mini-batch

1: B ← GetMinibatch({Mu}) from all user-movie pairs

2: N ← Sample contractive movies mu,j for each mu,i ∈ B

3: Compute mini-batch loss using Eq. 9.49:

4: LB ← 1
|B|
∑
〈mu,i,mu,j〉∈〈B,N〉 Lmu,i�mu,j

5: Update parameters: Θ← Θ− ΓAdam(∇ΘLB)

Training Procedure

This model is also implemented using Keras [37] with Tensorflow as the backend.

We initialize the word embeddings with the pre-trained GloVe vectors [171]. The

learning algorithm is similar to the procedure given Algorithm 4, we list a very brief

scheme of the learning procedure on a mini-batch in Algorithm 5, where ΓAdam(·)

denotes Adam [111] based gradient descent optimizer.

9.5 Experiments

To evaluate HAM on text content as presented in Section 9.3, we conduct ex-

periments on the two real-world datasets: (1) DBbook † is a binary-label dataset

to indicate if a book is relevant for a user or not, and (2) CiteULike dataset [222]

is a unary label dataset to indicate the academic papers that users have added to

their libraries. Therefore, we train our model on DBbook dataset as a classification

problem, while we train our model on CiteULike dataset as a ranking problem.

To evaluate MAM on multimodal content as presented in Section 9.4, the ex-

periments are conducted on the real-world movie watch dataset MovieLens 1M [69].

We demonstrate our model from three aspects: (1) recommendation accuracy; (2)

new movie recommendation, and (3) interpretation of attraction on movies.

†http://challenges.2014.eswc-conferences.org/index.php/RecSys
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9.5.1 Comparison Methods

The following state-of-the-art content-based methods are compared for content

recommendation. CF methods cannot deal with textual content and recommend

new articles as the study focus in this work so they are not included for comparison.

• CENTROID : We create user profiles using the centroid [157] of all word em-

bedding vectors from the users’ articles. Then, we rank recommendations by

the similarity between the user profile and the centroid of word embedding

vectors of candidate articles.

• CTR: It performs regression for users over the latent topic distribution of each

article learned from LDA.

• CWER: Similar to CTR, we create the collaborative word embedding regres-

sion (CWER) to perform regression for users over the centroid word embedding

vector of each article initialized by GloVe embeddings.

• FM : Factorization machines take the normalized term frequency for each ar-

ticle as the features.

• HAM : This is our model proposed in Section 9.3.

• HAM-P : This is a variant of HAM, where we remove the group attraction

filters and only consider user attraction filters (cf. Eq. 9.10, 9.11 and 9.12).

• MAM : This is the full multimodal attraction model proposed in Section 9.4.

• MAM-S : This is the single-modal version MAM that only has the story at-

traction module.

• MAM-C : This is the single-modal version MAM that only has the cast attrac-

tion module.
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9.5.2 Attraction on Books for Classification

Data Preparation

The books available in the dataset have been mapped to their corresponding DB-

pedia‡ URIs. The mapping contains 8,170 DBpedia URIs. We use these mappings

to extract the abstract from the DBpedia repository by SPARQL. Since this dataset

does not contain group information, we conduct clustering algorithms to split users

into 20 groups where the similarity is measured by the number of common books

between users. The brief statistics of this dataset is reported in Table 9.1.

Table 9.1 : The statistics of DBbook dataset

# users 6,181 # groups 20

# books 6,733 # labels 72,372

vocabulary 29,554 # labels / # users 11.71

# words/# sentences 9.86 # sentences/# abstracts 5.81

To test the performance of classification in which the positive books are relevant

to users, we randomly held out 20% user labels from the dataset as the testing

set, and the remainder was served as the training set. In this chapter, one of the

most important tasks is to find new content, correspondingly the new books in

this dataset, without knowing any other users’ feedback. To simulate this case, we

randomly selected 10% books and held out all their user labels from the dataset,

and the remainder of 90% books and their labels are used for training.

‡http://dbpedia.org
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Table 9.2 : The classification performance on published books

CENTROID CWER FM HAM-P HAM

AUC 0.5466 0.5350 0.5944 0.6533 0.6958

ACC 0.6431 0.6815 0.6828 0.6983 0.7151

Relevance Classification on Published Books

Note that CTR is designed for item ranking, which cannot be applied to clas-

sification. Therefore, it is not included in this experiment. Table 9.2 reports the

classification performance in terms of AUC and ACC on the published book dataset.

CENTROID and CWER are built on the document representation induced from

the centroid of word embeddings. However, there are many uninformative and even

noisy words in an article, which often make the centroid of word embeddings deviate

from the core topic of the article. As a result, the classification performance may

degrade due to the obscure document representation. FM outperforms CENTROID

and CWER because it actually performs CF by factorizing the interaction between

users and the features of articles. Therefore, FM achieves better performance when

articles are associated with more user labels. HAMs (HAM and HAM-P) outper-

form other models, which highlights the underlying design, that is, the hierarchical

attraction filters can effectively detect the most attractive features, i.e., words and

sentences, and reduce the obscure from uninformative words and sentences. In fact,

HAMs conduct a personally attraction-based feature selection process in terms of

the attraction filters to highlight the most salient features to a user. In particular,

we find that the AUC scores of HAMs exceed other models with a clear margin

(above 10%), which proves that HAMs can more effectively differentiate relevant

books from irrelevant ones by scoring attraction.
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Table 9.3 : The comparison of classification performance with/without group at-

traction filters w.r.t. users ≤ 5 labels and users ≥ 20 labels

# labels ≤ 5 # labels ≥ 20

HAM HAM-P HAM HAM-P

AUC 0.6372 0.6869 0.6922 0.7085

ACC 0.6745 0.7190 0.7186 0.7212

In HAM, we impose group attraction filter to regularize personal attraction filter

(cf. 9.9). Theoretically, the group attraction filter acts as the prior which plays a

more important role when fewer labels are observed between a user and books. Table

9.3 demonstrates the classification performance w.r.t. two cases, i.e., the insufficient

label users (≤ 5 labels) and the adequate label users (≥ 20 labels). From the results,

we find that HAM outperforms HAM-P in the case of ≤ 5 labels, whereas HAM

does not show obvious superiority over HAM-P in the case of ≥ 20 labels. This

result is consistent with the above analysis, which proves that incorporating group

attraction filter can effectively alleviate the overspecialization for those users with

insufficient data.

Relevance Classification on New Books

Judging the relevance on new books is more challenging due to the absence

of user feedback. The performance is reported in Table 9.4. Since CENTROID

and CWER are pure content-based models without the needs of feedback, their

performance of is improved slightly (cf. Table 9.4 and Table 9.2) due to more training

data (90%). In comparison, the performance of FM drops apparently because no

interaction between users and the features of a new article can be used for learning

with factorization. HAMs learn user attraction filters on textual contents, and
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Invitation to the Game 

User I 

Attractiveness 

on sentences 

Invitation to the Game is a science fiction book written by Monica Hughes. It has recently been published as The 

Game. The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform 

most jobs and children go to government schools. Because of this, very few people are employed, with many 

people living on a social welfare system for support. The unemployed people have nothing to look forward to, except 

various illicit drugs. Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there 

is a reference to leaflets printed up), and many are involved in organized crime of some form or another. The 

government, possibly the only government in existence at this point, is shown to have complete control over its 

citizens by restricting the unemployed to designated areas (DAs), and having similar control over the working-class. 

The working-class people are taught to hate the unemployed citizens, and the unemployed generally want money and 

employment, in a classic class struggle. The story is told from the perspective of Lisse, a recent graduate of school. 

Attractiveness 

on words 

The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform most jobs 

and children go to government schools. 

  

User II 

Attractiveness 

on sentences 

Invitation to the Game is a science-fiction book written by Monica Hughes. It has recently been published as The 

Game. The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform most 

jobs and children go to government schools. Because of this, very few people are employed, with many people living 

on a social welfare system for support. The unemployed people have nothing to look forward to, except various illicit 

drugs. Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there is a 

reference to leaflets printed up), and many are involved in organized crime of some form or another. The 

government, possibly the only government in existence at this point, is shown to have complete control over its 

citizens by restricting the unemployed to designated areas (DAs), and having similar control over the working-class. 

The working-class people are taught to hate the unemployed citizens, and the unemployed generally want money and 

employment, in a classic class struggle. The story is told from the perspective of Lisse, a recent graduate of school. 

Attractiveness 

on words 

Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there is a reference to 

leaflets printed up), and many are involved in organized crime of some form or another. 
  

Figure 9.5 : Attractiveness visualization on the abstract of Invitation to the Game

w.r.t. sentences and words in the most attractive sentences for two users. The larger

size and deeper color of font denotes the larger attractiveness weight is assigned.

these user attraction filters can efficiently to score new content. As a result, HAMs

outperform other models on the new books.

Table 9.4 : The classification performance on new books

CENTROID CWER FM HAM-P HAM

AUC 0.5533 0.5667 0.5399 0.6461 0.6838

ACC 0.6449 0.6981 0.6869 0.7104 0.7287

Interpretability Case Study

The most important value of attraction modeling is to disclose the attractive

points for interpreting the cause of user historical selection and the reason for rec-

ommendation. In this experiment, we randomly pick two users and a book with the
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title Invitation to the Game to illustrate user attractiveness on its abstract. Figure

9.5 visualizes the attractiveness, according to the weights (cf. Eq. 9.21) over the

sentences, and the weights (cf. Eq. 9.16) over the words in the most attractive

sentence. From the results, we can easily find the attraction difference between

two users. User I is more attracted by the plots of science and technology (see the

highlighted sentence), especially for the keyword robots, while User II is more at-

tracted by the plots of gangsters and crimes (see the highlighted words). Obviously,

HAM acts as a good interpreter to tell the insight of user selection and why the

recommendation is made.

9.5.3 Attraction on Academic Papers for Ranking

CiteULike Dataset

CiteULike is an online platform which allows users to create personal libraries by

saving interesting papers. This dataset [222] consists of the unary labels to specify

the papers in the users’ libraries. In addition, it provides the abstract of each paper.

We adopt the same way to create 20 user groups as clustering users in DBbook

dataset. Table 9.5 reports the brief statistics.

Table 9.5 : The statistics of CiteULike dataset

# users 5,551 # groups 20

# papers 16,980 # likes 204,987

vocabulary 48,004 # likes / # users 36.93

# words/# sentences 10.01 # sentences/# abstracts 9.64

For testing the ranking performance on published paper recommendation, we

randomly held out 20% saved papers in user libraries as the testing set, and the re-

mainder was used for training. Recommendation on new papers in terms of content-
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based approach is a key study problem in this paper. To simulate this case, we

randomly selected 10% papers and held out all their save record from the dataset,

and the remainder of 90% papers and their save record were used for training. For

each hold-out test sample in the above two testing sets, we randomly draw ten noisy

samples to test whether the testing methods can correctly rank the true sample at

a top position out of the noisy samples.

Recommendation on Published Papers

In RSs, ranking recommendation items is a more common task than classifying

items as studied above. Table 9.6 reports the recommendation accuracy. CTR ranks

the user preference on an article according to the topic distribution. As CWER, the

uninformative words may overwhelm the topic distribution of an article in CTR.

As a result, CTR achieves similar performance with CWER. Due to the relatively

sufficient papers in users’ libraries (37 papers on average, cf. Table 9.5), FM has

sufficient data to perform factorization. As a result, it outperforms all baselines

except HAMs. For Table 9.5, we can find each sentence consists of 10.01 words

on average while each abstract consists of 9.64 sentences on average. With these

relatively long sentences and articles, HAMs can extract the most attractive words

and sentences while filtering out uninformative words and sentences, which is closer

to the way of finding attractive papers by a human. As a result, HAMs significantly

outperform other comparison methods.

Figure 9.6 (a) illustrates the recall of all comparison methods. We find that the

plots of HAMs are above the plots of baselines with a large margin, which proves

that HAMs can more effectively capture users’ preferences on candidate papers and

correctly rank them in terms of scoring the attractiveness over each paper (cf. Eq.

9.24).
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Table 9.6 : The ranking performance on published papers

MAP nDCG

Method @5 @20 @50 @5 @20 @50

CENTROID 0.3852 0.4199 0.4473 0.4999 0.5937 0.6544

CTR 0.5189 0.5627 0.5869 0.6297 0.7181 0.7600

CWER 0.5152 0.5652 0.5902 0.6240 0.7179 0.7600

FM 0.5747 0.6190 0.6411 0.6834 0.7662 0.7996

HAM-P 0.6535 0.6944 0.7126 0.7491 0.8190 0.8449

HAM 0.6639 0.7005 0.7191 0.7577 0.8227 0.8488

Recommendation on New Papers

The new paper recommendation cannot be handled by pure CF methods, so the

content-based approach is more desirable for recommending new content in this new

media age. The ranking performance of all comparison methods for new papers is

reported in Table 9.7 and the recall is illustrated in Figure 9.6 (b). CENTROID un-

derperforms other methods for the reason analyzed in the above subsections. CWER

and CTR achieve similar performance, which proves the effectiveness of personally

attraction-based content-based matching even without any users’ like records. In

comparison, FM does not achieve good performance as in the last experiment due

to the absence of feedback on new papers. Detecting attractive points is a critical

task for the new paper recommendation, which demonstrates the goal and value of

attraction modeling. From Table 9.7 and Figure 9.6, we find that HAMs outperform

other baselines with more than 10% improvements in terms of all evaluation metrics,

i.e., MAP, nDCG and Recall. It is because researchers often decide to save a paper

to their libraries due to the glance of some attractive points. This proves the value

of our design that HAMs can precisely capture users’ multilevel attraction on an
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Figure 9.6 : Recall@5-50 on the Published Paper testing set and the New Paper

testing set

article over the words and the sentences.

Interpretability Case Study

As illustrated in Introduction, different user groups may have quite different

attractive points in an article. We randomly pick a paper to demonstrate these

difference. Figure 9.7 lists six sentences of the abstract of the paper titled “Exploring

complex networks”, and we list the most attractive word by scoring the attractiveness

over words in each sentence, only using group attraction filter, cf. Eq. 9.28. From

this demonstration, we can easily find the difference of attraction between groups.

For example, we find that Group I has more attraction on the topology of the network

and the dynamics on the network. In comparison, the attractive words imply that

Group V pays more attention to the behavior on the network. Therefore, we can

utilize HAM to analyze and interpret the attraction between different groups.

In the second demonstration, we list the top five new papers with the highest

attractiveness score (cf. Eq. 9.24) from the testing set and the most attractive

word in each sentence. Figure 9.8 lists the results w.r.t. two exemplary users.
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Table 9.7 : The ranking performance on new papers

MAP nDCG

Method @5 @20 @50 @5 @20 @50

CENTROID 0.4216 0.4697 0.4878 0.5242 0.6270 0.6675

CTR 0.5744 0.6249 0.6380 0.6723 0.7552 0.7780

CWER 0.5660 0.6188 0.6324 0.6626 0.7492 0.7728

FM 0.4736 0.5388 0.5539 0.5817 0.6887 0.7153

HAM-P 0.6315 0.6776 0.6893 0.7216 0.7917 0.8129

HAM 0.6352 0.6808 0.6928 0.7264 0.7961 0.8151

From this figure, we may speculate User I is a geneticist and s/he is especially

attracted by the topic of genome sequencing. In comparison, User II may be a

neuroscientist focus on brain imaging. From the recommended papers for User I,

we find three papers have been really saved in user’s library, where we can find

the three most attractive words, “gene”, “genome” and “sequencing”. If we take a

closer look into the other two articles not in User I’s library, we find that “gene”

and “sequencing” are the most attractive words in paper The effect of sequencing

errors on metagenomic gene prediction and “genome” is the most attractive word

in paper Human genome sequencing using unchained base reads on self-assembling

DNA nanoarrays. Obviously, these two recommended new articles are quite relevant

to the papers in User I’s library. Therefore, they are potentially good candidates

to attract User I. Similar cases can be observed from User II, “brain”, “neuro”,

“cortex” and “imaging” are iconically attractive words in the top five recommended

articles with the highest attraction scores.
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Exploring complex networks 

1. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network 

of the bacterium Escherichia coli?  

2. Are there any unifying principles underlying their topology?  

3. From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical 

systems-be they neurons 

4. Power stations or lasers-will behave collectively 

5. Given their individual dynamics and coupling architecture.  

6. Researchers are only now beginning to unravel the structure and dynamics of complex networks. 

 Sentence 1 Sentence 2 Sentence 3 Sentence 4 Sentence 5 Sentence 6 

Group I network topology network stations dynamics networks 

Group II food underlying neurons behave individual beginning 

Group III Escherichia topology dynamical collectively architecture researchers 

Group IV coli topology neurons collectively architecture networks 

Group V characterize unifying neurons behave individual complex 
 

  

Figure 9.7 : Demonstration of the different of group attraction on the abstract of

the paper Exploring complex networks. We list the most attractive word in each

sentence for each group to illustrate their difference.

 
 

Title of Top 5 Attractive Papers 
In 

Library 
The Most Attractive Word in Each Sentence 

User I 

Genome sequencing in microfabricated high-density 

picolitre reactors 
Yes sequencing, throughput, fibre, sanger, amplification, novo 

The effect of sequencing errors on metagenomic gene 

prediction 
No 

gene, metagenomic, gene, gene, specialized, gene, sanger, 

gene, metagenomic, eukaryotic, outperforms, metagenomic, 

sequencing, error 

Assembly algorithms for next-generation sequencing data Yes sequencing, solid, error, novo, summarizes, bruijn 

ALLPATHS: De novo assembly of whole-genome shotgun 

microreads 
Yes 

sequencing, novo, solexa, escherichia, genomes, 

polymorphism, genome, genome, genomes, edges, genome 

Human genome sequencing using unchained base reads on 

self-assembling DNA nanoarrays 
No genome, probe, genomes, variants, genome, genome 

User II 

Automatic "pipeline" analysis of 3-D MRI data for clinical 

trials: application to multiple sclerosis 
No 

imaging, image, regulatory, rater, image, scans, algorithms, 

sclerosis, pipeline, lesion, rater, detect, sclerosis, neurological 

Intrinsic signal changes accompanying sensory stimulation: 

functional brain mapping with magnetic resonance imaging 
Yes magnetic, brain, signal, relaxation, oxygenation 

Coding of border ownership in monkey visual cortex No 

cortex, neural, cell, displays, square, neurons, contrast, coding, 

luminance, onset, differences, responses, cues, neurons, 

displays, neurons, receptive, cortex 

Functional connectivity in the motor cortex of resting 

human brain using echo-planar MRI 
Yes pixel, cortex, brain, fluctuations, oxygenation 

The precuneus: a review of its functional anatomy and 

behavioural correlates 
Yes 

neuroimaging, cortical, lesion, imaging, retrieval, resting, 

correlates,  cortex, vegetative, precuneus, subcortical, 

connectional, links, activation, imaging, anterior, involved, 

retrieval 
 

Figure 9.8 : Demonstration of two exemplary users’ most attractive papers in the

testing set. We list the most attractive word in each sentence of the recommended

papers for interpretation.

9.5.4 Multimodal Attraction on Movies

Data Preparation

We collect user watch records from the MovieLens 1M dataset. However, this

dataset does not contain any story and cast data. Fortunately, researchers have
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Table 9.8 : Statistics of content-enriched MovieLens dataset

#movies 3,900 #users 6,040

#watch record 1,000,209 #cast 9,398

story vocabulary 22,582 #sentences/#story 10.2

#cast/#movie 6.44 #plays/#cast members 2.10

provided a good mapping from MovieLens ID to DBPedia URI [160]. We queried

all available story abstract and cast data from DBPedia. The statistics of the data

are reported in Table 9.8.

For testing the performance on released movie recommendation, we randomly

held out 20% user watch records as the testing set, and the remainder were served

as the training set. One of the most important tasks is to recommend new movies

without knowing any watch record. To simulate this case, we randomly selected 10%

movies and held out all their watch records from the dataset, and the remainder of

90% movies and their watch records were used for training. For each hold-out

test sample in above two testing sets, we randomly draw ten noisy samples to test

whether the testing methods can rank the true sample at a top position out of noisy

samples.

Recommendation for Released Movies

We evaluate the recommendation performance on released movies associated

with users’ watch records, that is, people have known the story and cast members

in these movies. Table 9.9 reports the recommendation accuracy. CTR scores the

user preference according to the topic distribution over a movie story. However,

there are many uninformative words which may obscure the core topic distribution

of the story. CENTORID and CWER are built on the story embedding derived
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Table 9.9 : Ranking performance on released movies

Method MAP@5 MAP@20 MRR@5 MRR@20

CENTROID 0.1738 0.1481 0.0763 0.0958

CTR 0.1226 0.1069 0.0514 0.0692

CWER 0.1666 0.1580 0.0798 0.1089

MAM-C 0.4243 0.3963 0.2118 0.2398

MAM-S 0.3816 0.3451 0.1822 0.2093

MAM 0.4252 0.3997 0.2187 0.2464

from the centroid of word embeddings. Since word embedding is an unnormalized

vector, it allows large elements to specify the significance. As a result, CENTORID

and CWER outperform CTR but they still suffer the obscure from uninformative

words. MAM-S leads CENTORID and CWER with a large margin, the MAP

and the MRR are at least 200% higher than baselines. This highlights the design

of our model, that is, we place two types of filters in MAM-S, one is to extract

the most attractive words and sentences and the other is to filter out noisy words

and sentences. MAM-C surprisingly performs well, this discloses the fact that the

attractiveness of a movie is heavily related to the attractiveness of its cast. Thanks

to the multimodal modules over story and cast to comprehensively capture users’

attraction from different aspects, MAM achieves the best performance out of all

comparison methods.

Figure 9.9 depicts the recall of all comparison methods. We find that the plots of

MAM-C, MAM-S, and MAM are above the plots of baselines with apparent margins,

i.e., MAM can more accurately retrieve the attractive movies for each user in top

positions. MAM combines the information from both modules, which leads to the

best recall.
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Table 9.10 : Ranking performance on new movies

Method MAP@5 MAP@20 MRR@5 MRR@20

CENTROID 0.2381 0.2409 0.1623 0.1900

CTR 0.1056 0.1374 0.0798 0.1089

CWER 0.1971 0.2346 0.1461 0.1801

MAM-C 0.1817 0.1664 0.1132 0.1370

MAM-S 0.3001 0.3059 0.2091 0.2371

MAM 0.2573 0.2671 0.1794 0.2090

Recommendation for New Movies

We apply the above design to recommend the attractive new movie, which cannot

be handled by pure CF methods, to demonstrate the goal and value of attraction

modeling. Content-based methods are more capable of tackling such cases widely

seen in this new media age. The ranking performance is reported in Table 9.10 and

the recall is illustrated in Figure 9.9 (b). CTR underperforms other methods for

the reason analyzed in the above subsection. CENTROID and CTR achieve similar

performance to the first experiment, which proves the effectiveness of content-based

matching using word embedding for new movies even without any user watch record.

Similarly, MAM-S achieves comparable performance with the above case. However,

MAM-C is the special case. We find that the performance drops drastically when

compared with Table 9.9. In fact, the reason behind is quite straightforward. We

can find most cast only appeared in two movies (cf. Table 9.8). Accordingly, users

cannot tell whether they will be attracted by an unknown cast. Figure 9.10 shows

two testing samples of a user. The left movie is associated with a high attractiveness

score due to the known cast members (in red) in this user’s training set, whereas the
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Figure 9.9 : R@5-50 on the Released Movies and the New Movies

Wild America (1997) Bogus (1996) 

William Dear, Scott Bairstow, Jonathan Taylor Thomas, 

Devon Sawa 

Norman Jewison, Gérard Depardieu, Whoopi Goldberg, 

Alvin Sargent, Haley Joel Osment 

Figure 9.10 : Two comparative testing samples of User 182 : the left movie Wild

America obtains a high attraction score because of the cast members in red appear

in user’s watched movies while the cast members of Bogus never appear in user’s

movie list.

cast members in the right movie are absent from user’s training set, which results

in low attractiveness scores. As a result, MAM-C tends to assign low rank on these

movies. This also proves the factor that the attractiveness of a movie is heavily

dependent on its cast members. Accordingly, the multimodal model MAM slightly

underperforms MAM-S due to the ineffectiveness of MAM-C.

Interpretation and Visualization

The most important value of multimodal attraction modeling is not only for

recommendation but for obtaining insight into the underlying causes of user selection

by disclosing the multi-aspect attractive points. In this experiment, we pick two

case studies to visualize the user attractiveness scores output by MAM. Figure 9.11
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Invitation to the Game 

User I 

Attractiveness 

on sentences 

Invitation to the Game is a science fiction book written by Monica Hughes. It has recently been published as The 

Game. The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform 

most jobs and children go to government schools. Because of this, very few people are employed, with many 

people living on a social welfare system for support. The unemployed people have nothing to look forward to, except 

various illicit drugs. Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there 

is a reference to leaflets printed up), and many are involved in organized crime of some form or another. The 

government, possibly the only government in existence at this point, is shown to have complete control over its 

citizens by restricting the unemployed to designated areas (DAs), and having similar control over the working-class. 

The working-class people are taught to hate the unemployed citizens, and the unemployed generally want money and 

employment, in a classic class struggle. The story is told from the perspective of Lisse, a recent graduate of school. 

Attractiveness 

on words 

The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform most jobs 

and children go to government schools. 

  

User II 

Attractiveness 

on sentences 

Invitation to the Game is a science-fiction book written by Monica Hughes. It has recently been published as The 

Game. The book is a hard science fiction dystopian novel set in 2154, a time when machines and robots perform most 

jobs and children go to government schools. Because of this, very few people are employed, with many people living 

on a social welfare system for support. The unemployed people have nothing to look forward to, except various illicit 

drugs. Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there is a 

reference to leaflets printed up), and many are involved in organized crime of some form or another. The 

government, possibly the only government in existence at this point, is shown to have complete control over its 

citizens by restricting the unemployed to designated areas (DAs), and having similar control over the working-class. 

The working-class people are taught to hate the unemployed citizens, and the unemployed generally want money and 

employment, in a classic class struggle. The story is told from the perspective of Lisse, a recent graduate of school. 

Attractiveness 

on words 

Some have formed gangs, some are shown to be agitating for political reform (in chapter 5 there is a reference to 

leaflets printed up), and many are involved in organized crime of some form or another. 
  

Figure 9.11 : Statistical attractiveness on movie Election (1999) w.r.t. sentences,

words in the most attractive sentences and cast members from the perspectives of

User 156 and User 2163. The larger size and deeper color of font denote the larger

attractiveness weight is assigned.

illustrates the statistical attractiveness, according to the weights (cf. Eqs. 9.29, 9.36

and 9.43), over the sentences of movie story, words in the most attractive sentence,

and the cast members points for User 156 and User 2163. The results show that we

can easily find the attraction difference between two users. User 156 is attracted by

the first sentence which highlights the genre of this movie, i.e., comedy-drama, while

User 2163 is attracted by the last sentence which highlights the award of this movie.

Similarly, we find User 156 is attracted by the director Alexander Payne while User

2163 is attracted by the star Reese Witherspoon. Therefore, we can easily use MAM

to analyze user selection and tell the insight about the recommendation made.
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9.6 Summary of Contributions

In this chapter, we enhance content-based RSs with attraction modeling. In

particular, the non-IID technique is focused on modeling the coupling relationships

between and content elements. The main contributions of this work are summarized

as follows:

• We propose the attraction modeling to build interpretable content preference

systems in this new media era. Moreover, we provide a framework of attraction

model to capture personal attractiveness over content elements.

• We design a hierarchical attraction model (HAM) to capture multilevel attrac-

tion over an article, i.e., word-level attraction, sentence-level attraction, and

document-level attraction.

• We design a multimodal attraction model (MAM) to learn the personal at-

traction over multi-type content. In particular, we take the story content and

the cast content of a movie as two modalities to study the attraction modeling.

• Extensive experiments on a real-world dataset are conducted to evaluate the

above design. All quantitative results show that our attraction models con-

sistently outperforms state-of-the-art methods. Moreover, we demonstrate a

collection of cases by exploiting the statistical attractiveness scores over the

textual and cast content to interpret recommendation results.
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Part V

Summary and Prospect



274

Chapter 10

Conclusion

In this thesis, we analyzed the issues and challenges in classic RSs and then pre-

sented the necessity of building non-IID RSs that consider various heterogeneities

and coupling relationships within and between users, items, and interactions. As

a result, we presented the design of six non-IID RSs in terms of machine learning

approaches. In this chapter, we conclude the contributions of this thesis.

10.1 Non-IID RS Modeling on Users

In this section, we focus on designing non-IID RSs by modeling the heterogeneity

between users and capturing the underlying coupling relationships. We studied the

non-IID modeling for two typical RSs with respect to users: a GBRS and SNRS.

10.1.1 GBRS Modeling: Learning Comprehensive Group Preference

Representation

We proposed a deep learning approach to overcome the deficiencies in current

GBRSs. To comprehensively learn the group characteristics, a DNN was designed

to model the heterogeneity between group members and learn a group preference

representation from feedback data of all group members. Essentially, our model

aims to learn high-level comprehensive embedding to represent group preference, to

avoid the vulnerabilities in a shallow representation. The empirical evaluation on

a real-world dataset proved that our approach can achieve performance that is far

superior to other state-of-the-art models. Because our approach constructs a deep

architecture that is able to disentangle group-specific features at a high level, it is
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applicable to many other areas that study group behavior with coupled interactions

among members.

10.1.2 SNRS Modeling: Learning Comprehensive Group Preference Rep-

resentation

We proposed a framework for modeling influential contexts in an SNRS and fur-

ther instantiated a context embedded multi-relation RS, namely ICE-MRS, with

neural networks. In particular, ICE-MRS learns user/item influence-aware embed-

dings from influential contexts through an influence aggregation unit (IAU). Exten-

sive experiments proved that ICE-MRS outperforms other state-of-the-art methods

as well as its effectiveness at handling the cold-start problem. In addition, we demon-

strated the interpretability of ICE-MRS using a real case. In fact, ICE-MRS is a

general influence-embedding model that can be applied to other domains with het-

erogeneous networks, such as user group behavior analysis and biological interaction

network, as well as RSs.

10.2 Non-IID Recommender Systems Modeling on Items

In this section, we focus on designing non-IID RSs by modeling the heterogeneity

between items and capturing the underlying coupling relationships. We studied the

non-IID modeling for two typical RSs with respect item: a CDRS and SBRS.

10.2.1 CDRS Modeling: Leveraging Knowledge Across Heterogeneous

Domains

We discussed the emerging requirements of cross-domain recommendation and

analyzed the limitations of current cross-domain CF methods. As a result, we

proposed weighted irregular tensor factorization (WITF) to more effectively model

heterogeneity and their couplings between domains. In particular, WITF addresses
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an irregular tensor factorization problem wherein each domain can have a specific

item set. Furthermore, an effective post learning procedure was designed to fine tune

the user and item factors of the target domain. In addition, the WITF framework

can deal with explicit preference data (e.g., ratings and implicit preference data,

such as clicks, in a unified algorithm).

We evaluated our approach on three typical real-world application scenarios. The

evidence from all the results showed that our approach outperforms all other state-

of-the-art methods, especially for cold-start cases. This is because WITF can more

effectively capture the domain-specific user preference through the triadic relation-

ship between users, items, and domains, whereas traditional models only model the

dyadic relation, and thus, they fail to represent the heterogeneities when transferring

knowledge between domains.

10.2.2 SBRS Modeling: Modeling Selection with Influential Users and

Items

To deal with the deficiencies of recommendation in traditional RSs without con-

sidering the couplings of the choices within a session and between the previous

sessions and current session, we proposed neural cross-session filtering (NCSF) to

build a more effective and efficient personalized SBRS. NCSF is a neural model

that jointly models the context of intra-session coupling and inter-session coupling

when recommending the next item. The empirical evaluation on the real-world E-

commerce dataset proved the comprehensive superiority of this approach over other

state-of-the-art methods. Moreover, NCSF is a general architecture, and therefore

it can be applied in many other domains besides RS; for example, the topic drift

problem in NLP.
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10.3 Non-IID RS Modeling on Complex Interaction

In this section, we focus on designing non-IID RSs by modeling the complex

interaction between users and items. In particular, we studied the non-IID modeling

technique on an MORS and ABRS.

10.3.1 MORS Modeling: Optimizing Credibility and Novelty for Long-

tail Recommendation

We addressed the challenges of improving the recommendations of items and

users in long-tail distributions, and analyzed the ineffectiveness of current approaches.

As a result, we proposed an MORS that targets the optimization on both credibility

and specialty. To jointly optimize these two coupled objectives, we proposed the

recurrent mutual regularization model (RMRM), which consists of two coupled com-

ponents, namely C-HMF, which emphasizes the credibility of ratings, and S-HMF,

which emphasizes the specialty of choices, wherein the parameters of C-HMF and

S-HMF are regularized in terms of the empirical priors induced from each other. The

empirical evaluations of two real-world datasets illustrated that RMRM is capable

of conducting more reliable predictions than the other compared methods, especially

for both items and users in the tail of distributions.

In fact, RMRM provides a general framework for learning latent features that are

regularized by multi-objective empirical priors. Therefore, RMRM and its extension

could be applied in many areas outside of RSs, such as CV, audio processing, and

multimedia clustering, all of which depend largely on the MF technique, and thus

could benefit from multi-objective regularization.
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10.3.2 ABRS Modeling: Capturing and Interpreting Attraction Points

in Content

We proposed attraction modeling to build interpretable content-based RSs. By

modeling attraction over content elements, we could more effectively capture user

preference and interpret user selection. In particular, a framework of the attraction

model was proposed to score personal attractiveness over content elements.

To study user attraction on textual content, we designed a hierarchical attrac-

tion model (HAM) to learn users’ multilevel attraction over an article. In particular,

the HAM can statistically interpret users’ historical selection and recommendation

results by learning multilevel attractiveness scores over words, sentences, and docu-

ments. Moreover, it is eligible to conduct new content recommendation.

To study user attraction on multiple types of content, we design a multimodal

attraction model (MAM) to learn user attraction on movie story and cast members.

MAM can provide the interpretation of user selection w.r.t. the multi-aspect attrac-

tive points. Moreover, it can conduct recommendation for new movies by jointly

considering the multimodal attraction.

The experimental results on three real-world datasets proved that attraction

modeling can improve the performance in content-based RSs. Moreover, the statis-

tical interpretability of the attraction model is helpful for analyzing user behavior

and explaining the recommendation results.
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Chapter 11

Open Challenges and Future Directions

At this stage, research on recommendation is still experiencing numerous challenges,

some classic problems have not been solved, and multiple open issues must be con-

quered. It is important to scrutinize the intrinsic complexities and nature of the

underlying recommendation problems. To this end, more complex and expressive

models must be built to learn the representation of coupling relationships and het-

erogeneity of recommended users and items.

11.1 New Evaluation Methods and Metrics

Accuracy metrics (cf. Chapter 3 Section 3.4) mode for RSs. However, some-

times improving the accuracy by one or two percentage points does not significantly

generate an improved user experience or more commercial benefits [149]. Therefore,

some researchers have proposed evaluation methods other than accuracy [54,66,75],

including diversity, novelty, and serendipity.

Non-IID RSs often need to model heterogeneity and coupling relationships from

multiple aspects; therefore, how to comprehensively evaluate a non-IID RS with

considering multiple evaluation criteria is a crucial development direction. In fact,

it is difficult to improve multiple metrics simultaneously, such as accuracy and di-

versity [251]. In addition to experimental metrics, real-world business systems are

often more concerned with certain business benefit indicators, such as the conversion

rate, purchase rate, and purchase amount, which are affected by the recommenda-

tion. Therefore, new evaluation methods and metrics are required to assess the
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effectiveness and efficiency of next-generation non-IID RSs.

11.2 SNRSs

Open Challenges

• How can big social-network data be dealt with?

First, billions of nodes exist in a real-world social network site such as Face-

book, which is a great challenge in terms of storage and computation. Second,

quite a few different types of connections between nodes exist (e.g., the fol-

lowing relationships between users and co-targeting events. To model all of

these heterogeneous relationships is another challenge. Third, the connections

between nodes continually change every second, and capturing these constant

changes is a great challenge.

• How can the influential nodes for the recommendation be recognized?

Given a target node, only a few connected nodes largely contribute to the

final decision instead of all of them. Detecting the most influential nodes is a

challenge.

• How can more social information be incorporated without invading privacy?

Incorporating more personal information and relationships may benefit the

recommendation quality but protecting users’ privacy is still the top priority.

Therefore, modeling SNRSs without invasion of privacy is another challenge.

Future Directions

• Representation of social relationships with a network embedding approach.

Network embedding has been extensively studied in recent years [40]. It has

the potential to be employed in modeling social relations in SNRSs.
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• Social dynamics modeling.

To model social dynamics, such as event propagation, connections, and dis-

connections, the memory mechanism [63,207,235] may be helpful.

11.3 GBRSs

Open Challenges

• How can group feedback data be collected?

As of today, very few real-world public datasets are available for studying

group behavior, which is an obstacle to the development of GBRS. In most

studies, the datasets are synthetic from personal feedback, which cannot reflect

the ground truth of group decision.

• How recommendations be made to an ad-hoc group?

Unlike a group with fixed members, such as a household, an ad-hoc group,

such as a meetup of friends or attendees of a conference, does not have the

historical choice record to learn group preferences at the group level.

Future Directions

• Using attention mechanism.

Most aggregation strategies for group-based recommendation concern how to

weight the contribution of group members. We may employ the attention

mechanism to learn to assign weights to members.

• Context-aware group-based recommendation.

Incorporation of contextual information is another direction to extend GBRSs.

Given the various contexts, the weights assigned to group members may be

quite different.
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11.4 CDRSs

Open Challenges

• How much information should be imposed for other domains?

Given multiple domains, a model needs to transfer the appropriate amount of

information that should be transferred from each auxiliary domain.

• How should knowledge be transferred between heterogeneous data domains?

In most studies, the data in different domains are of the same type, such as

ratings [83,84,137], text [57,208], or images. To model domains with different

types of data and transfer knowledge between them is still an open challenge

for CDRSs.

Future Directions

• Non-overlap cross-domain transfer.

In most current CDRSs, the overlapped users and/or items across different

domains [28] are required to establish the links between domains to leverage

the knowledge. However, it is often not possible to find identical users or

items from different domains; for example, the user IDs of different sites, such

as Facebook and Twitter, are generally different because of privacy. Therefore,

to design a CDRS without the need for explicit overlap is a crucial research

direction.

• Heterogeneous cross-domain RSs.

Generalized cross-domain tasks including domain adaptation [185], transfer

learning [166], multimodal learning [12] and multi-source learning [39] involve

multiple domains, which is challenging because the heterogeneities across do-

mains engender significant challenges to modeling. In contrast to the common

consensus, information shared across domains, and learning heterogeneous but
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complementary information between domains, must be considered in next-

generation CDRSs.

11.5 SBRSs

Open Challenges

• How can multiple intents be detected in a session?

For a long session, it often contains multiple intents, for example, buying food

and buying electronics could be two independent intents in the same online

transaction. The crucial task is to detect these intents. However, these intents

are not easily estimated from the mixed sequence of a session.

• How can the intent of the next item be detected?

In a multi-intent session, the intent may continue to change in every choice. To

recommend the next item, the underlying intent must be captured. Therefore,

a challenging problem is to detect the intent of the next-item choice.

Future Directions

• Incorporating user and item features.

Most current SBRSs mainly model the action sequences without considering

the extra features of items and users. In real-world applications, much richer

types of data are usually available, such as the description of an item and/or

the image of an item. Definitely, incorporating this information can more

effectively infer users’ intents and capture the coupling between items.

• Working with additional contextual information.

Modeling an SBRS mainly attempts to capture the coupling and transition

between items. However, the transition between users’ choices is quite rel-

evant to the contextual factors, such as a user’s geographical position, the
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current weather, or the time of the day. Therefore, incorporating contextual

information into SBRSs is a promising research direction.

11.6 MORSs

Open Challenges

• How can the impacts from multiple objectives be integrated?

Generally, it is difficult to find a solution that is optimal for all objectives. In

a different context, the optimal solution may also be quite different.

• How should objectives be personalized for the recommendation?

Different users often pay attention to different objectives; therefore, how to

determine a personalized optimal solution for multiple objectives is a great

challenge.

Future Directions

• Applying multi-objective optimization methods in the recommendation.

Many existing multi-objective design, analysis, and optimization methods [44,

100], such as multiple-criteria decision analysis and multidisciplinary design

optimization, are potentially integrated into MORS.

• Generalized multi-objective recommendation.

In fact, most of the aforementioned non-IID RSs have natural connections

with MORSs, because all of them attempt to model the coupling relationships

over users, items, and domains. For example, we may set up an objective

for each group member when conducting group-based recommendation; then,

the GBRS can be reduced to an MOP by finding a solution to maximize the

satisfaction over all members’ objectives. For cross-domain recommendation,

we can set up an objective for each domain, and then the MOP is to jointly
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optimize all of the objectives over all domains. Given multi-relation networks,

the social network, the item network, and the user-item network are generally

associated with different objectives for learning; thus, multi-objective opti-

mization is a natural choice for finding the solution to this recommendation

problem.

11.7 ABRSs

Open Challenges

• How should the attraction models be evaluated?

As previously stated, attraction is a type of subjective feeling for each user.

We indirectly validated the effectiveness of attraction modeling by checking

whether it can improve recommendation performance. At this stage, it is al-

most impossible to find thousands of real users who can express their feelings

about millions of posts, news stories, and movies. Furthermore, users’ attrac-

tion may keep changing with surroundings. Therefore, it cannot substantially

verify whether the statistical attraction output of our models can genuinely

match the true attraction of a user at a certain moment.

Future Directions

• Attraction modeling on more data types.

In Chapter 9, we focused on modeling attraction on textual data (story) and

categorical data (cast), which are the most common data in content-based

RSs. For other content such as music, images, and videos, it is possible to

incorporate some feature learning models, such as CNN, to extract their local

representations, and then an attraction model can be modeled over them.

• Attraction modeling for studying user behavior in more applications.

In Chapter 9, we focused on modeling the attraction in content-based RSs.
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In fact, other applications such as link prediction and social network analysis

may also employ attraction modeling to study user behavior.

• Involving theories from other disciplines to model and explain attraction. Be-

cause attraction is a subjective feeling, some advanced approaches involving

psychology, neuroscience and brain science, are promising research directions

for modeling attraction.

• Context-aware attraction modeling.

Attraction is a subjective feeling that changes according to many context fac-

tors, such as time, location, and companions. Therefore, incorporating con-

textual information will be highly beneficial for capturing users’ attraction.

11.8 Unified and Ubiquitous RSs

In this thesis, we presented multiple non-IID RSs from different perspectives. In

fact, the ultimate RS of the future will be a unified system, which is the synergy

of all of the above mentioned recommendation techniques. In Section 11.6, we

presented the multi-objective optimization technique to work with CDRSs, GBRSs,

and SNRSs. Similarly, session-based recommendation modeling could be considered

in all other non-IID RSs, because all of the choices in these RSs have a sequential

order. Furthermore, the cross-domain problem is common in other non-IID RSs,

such as SNRSs, GBRSs, and SBRSs, in which the items may belong to quite different

domains. Furthermore, the contextual information, such as the time of day or

geographic regions, can be modeled using the cross-domain technique. In an ABRS,

all of the recommendation techniques can be employed to capture users’ attraction,

and vice versa. Obviously, these RSs are interdependent and reinforce each other.

In the future, RSs will be ubiquitous in daily life. We may not explicitly perceive

their existence because we would be accustomed to ubiquitous recommendations
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throughout our lives, for food, clothing, work, health, and all other parts of daily

living. RSs can be conscious of all available environmental information, physical

conditions, and lifelong data to provide the most effective suggestions and plans.
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