
Modeling Semantic Web Service using Semantic
Templates

Liang Hu#1, Jian Cao#2, Zhiping Gu*3
Department of Computer Science and Technology, Shanghai Jiaotong University

200030 Shanghai, China
1milkrain@sjtu.edu.cn, 2cao-jian@sjtu.edu.cn

* Department of Electrical Engineering, Shanghai Technical Institute of Electronics & Information
201411 Shanghai, China
301019@sheic.edu.cn

Abstract: Web Services have been widely used recent years. In order
to enable the intelligent discovery and use by machine, the semantic
information should be provided to represent various aspects of Web
Services. If it always need build complex semantic information from
scratch to describe every aspect of Web Service, it will lead to not only
large redundancy and inconsistency but also low maintainability and
extensibility. The Customizable Semantic Template is proposed to
resolve such issues, which enables to semantically model any aspect
of Web Service in a more flexible and efficient way. A universal
method to automatically generate Semantic Template instance is also
proposed to resolve the issues like high workload for building
semantic information for every aspect of Web Service manually and
high specialized domain knowledge required.

I. Introduction
Web Service has been widely used in a lot of domains, due

to the powerful interoperability for operating, accessing and
sharing resource. The number of Web Services is growing
rapidly in every domain. As a result, it becomes obviously
unfeasible to organize, classify and manage manually. From
the automation perspective, the most concerned is how to
enable machines to aware, manage and operate Web Services
automatically. In order to achieve such goal, the semantic
technology for Web Services has begun to research.

Semantic information is the foundation to enable machines
to be intelligent. There are already some researches to
generate semantic information for Web Services in automatic
or semi-automatic ways. Think about the following questions,
Q1: whether the more semantic information created for any
aspect of Web Services the better it will be? Q2: How to
appropriately create semantic information for different aspects
of the Web Services? Q3: Whether it is necessary to create
independent and complex semantics for each different aspect
of Web Services from scratch?

Our view paper for above questions is: For Q1, the answer
is negative, the more semantic information created the more
time will consume, and the number of errors will increase.
However, to an application, it often only focuses on certain
kinds of semantic information and ignores the others.
Furthermore, sometimes it is necessary to balance the
precision and recall, too much semantic information may
make agent confused for reasoning. For Q2, it is a further
supplement for Q1. Creating semantic information for Web
Service should follow the principle that it should be high

cohesion instead of providing some kind of semantic
information could cover data, operation, and error handling all
together in one place. For Q3, the answer is negative either. It
can further clarify the meaning of the Q2. There is more or
less duplicated semantic information created for various
aspects of the Web Services, if every aspect always creates all
of the semantic information from scratch. Finally, it will
probably result in much redundancy and inconsistency and
widen the gap of collaboration and integration. To avoid these
issues, it should be possible to reuse existing semantic
information to describe various aspects of the services. The
semantic description for certain aspect of Web Services may
be too complex to describe with simple semantic information,
but it is able to construct composite semantic information for
describing by composing the existing simple semantic
information from multiple basic aspects.

 In this paper we proposed a formal solution to these issues
— Semantic Template. For different aspects of Web Services,
we can customize different types of Semantic Templates as
the semantic representation. Our research work mainly covers
two areas: 1) Customize various types of Semantic Templates
for modeling all aspects of Web Services. 2) Construct a
flexible framework to automatically generate Semantic
Template instances.

In Section 2, the usage and features of different type
Semantic Template is presented. Section 3 presents the key
technologies in the process of automatically generating
Semantic Template instance. Section 4 presents the
experiment and evaluation base on the prototype. Section 5
lists the related works. Section 6 presents conclusions and the
outline for future work.

II. Modeling Semantic Templates
As previously discussed, if it always needs to build

complex semantic description for each aspect of Web Service
from scratch, it will generate a lot of redundant and
inconsistent semantic information and lead to low
maintainability and extensibility. Therefore, it is necessary to
find a reusable mechanism to improve the flexibility and
availability in use of the semantic information.

Semantic Templates are created for modeling any aspect of
the Web Service semantically. Semantic Template schema is
defined to model the profile of some aspect of Web Services.

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SKG.2008.52

165

The Semantic Template instance is created to describe this
aspect of some concreted Web Service with the concrete
semantic information according with the content as schema
defined.

Meta Info
Template

Data
Template

QoS
Template

Condition
Template

Action
TemplateWeb

Service

Ontology Base

Ontology Ontology Ontology OntologyOntology

Reference Reference

Modeling
Modeling

Modeling

Fig. 1 Semantic Templates for modeling Web Services

As shown in Fig.1, Semantic Templates can be used to
modeling any aspect of Web Services, which provide a
reasoning context to make agents be able to aware what kind
of behaviour should cause. There are some important features
for Semantic Template:
High cohesion: Semantic Template should be the high
cohesive. Each basic Semantic Template should focus on
describing a point of function or attribute of Web Service. A
complex Semantic Template should refer a couple of existing
Semantic Templates to express sophisticate semantics.
Composite ability: Semantic Templates are compostable.
Complex semantic information for describing some aspect of
Web Service usually could be decomposed into more basic
semantics, so a couple of basic Semantic Templates can be
used to compose a composite Semantic Template.
Furthermore the composite Semantic Template can be used to
construct more complex templates.
Extensibility: Semantic Template is extensible. The way to
extend Semantic Template through composing templates has
been presented. Another way is to extend Semantic Template
through inheritance, which can add additional types of
semantics for the base template.
Virtuality: Semantic Template makes it possible to use Web
Service virtually. The Web Services that exposed to client
probably may not physically exist in system. Semantic
Templates may have decorated the inputs and outputs or
encapsulated the internal business process. The difference
between physical Web Service and virtual Web Service are
transparent to client, because agents can handle the internal
process with the Semantic Template support.
Dynamic: Semantic Template can represent dynamic values
or logics. It could express not only the logic for validating
input and output at run time but also the abstract business
processes logics for discovering or executing on the fly.
1.1. Modeling Basic Semantic Templates

Since some basic semantics can be composed to describe
some complex aspect of Web service, some types of basic
Semantic Templates should be constructed first to model the
most basic aspects of the Web Services. Such templates can
be called Meta Semantic Templates which must be high
cohesive because they are the basic building blocks for
constructing complex Semantic Templates.

Semantic Template does not specify the language to
construct it. Such as RDF/S, OWL can be used to construct it
as shown in Fig. 2, and it can also used WSMO[10],
SWSO[17] to construct the logics.
A. Action Template: Generally, the purpose of an operation
in Web Service can be described as an action. The most
common element to form an action is a verb and its target. For
example, “Reserve Hotel”, {Verb = “Reserve”, “Target =
Hotel”}. So we can define the Action Template with the
semantic properties of {Verb, Target} to describe the basic
behaviour of the operation semantically. Fig. 2 shows a very
simple Action Template and its instance. Although the Action
Template we defined only contains two properties, it is
competent for satisfying the request of the Web Service
discovery for users.

Ontology Base

Action Template Schema
<rdfs:Class rdf:ID="Verb"/>
<rdfs:Class rdf:ID="Target"/>

Action Template Schema Instance: ReserveHotel
<Verb rdf:ID="Reserve">
<OntoReference rdf:datatype="xsd#anyURI">wn#Reserve</OntoReference>
</Verb>
<Target rdf:ID="Hotel">
<OntoReference>
<OntoReference rdf:datatype="xsd#anyURI">travel#hotel</OntoReference>
</Target>

WordNet
Ontology

Travel
Ontology

Fig. 2 Action Template Schema and Instance1

B. Meta Information Template: Meta information for Web
Service should always be provided for better use and
management such as category, providers, version, which
could lead users or agents to identifying Web Services more
directly. So the Meta Information Template can be created to
accommodate such information. Since Semantic Template is
extensible, some organization can extend Meta Information
Template schema with the specific information. For example,
add public key as the additional attribute to the template for
some high security demanded environment.
C. Data Template: The basic function of Web Services is to
access data. Several Web Services can be composed by data
stream, so Data Template can be defined for data name and
data type. Data Template can contain sub Data Templates as
properties, because the complex data concept may contain
some simple data concepts. Data Template not only can
express the concept of data, but can be referred by other
Semantic Template. For instance, it can be composed in
Condition Template Data Template for precondition or
post-condition checking.
D. QoS Template: In the complex network environment, the
QoS for Web Services is always concerned. QoS Template
can be used to inform agent to create Web Services execution
context, such as the security context, cost, response time. QoS
Template can be overridden, for example, global environment

1 The following figures will no longer involve language details for Semantic
Templates modeling, instead they only illustrate the outline of the structures.

166

may define the security context using Triple DES encryption
while certain operation should use RSA encryption, and the
encryption of global QoS Template will be overridden. QoS
Template is usually composed into some complex Semantic
Template for further use.
1.2. Modeling Advanced Semantic Templates

According to the principle of high cohesion, it is a wrong
way to construct a Semantic Template with all kinds of
semantics and logics. The correct way is to take advantage of
the composite ability to create a complex template by
composing various existing templates. Another benefit for
such method is that agent does not need to handle all complex
reasoning tasks for the complex template, and it could
delegate the reasoning task to each sub Semantic Template
processor.
A. Condition Template: Sometimes it needs to check
validation or do some environment setting before running
Web Services, and to verify the result or release some
resource when it finishes running. Condition Template could
be defined to describe such requirement. For instance,
precondition property defines the expected inputs and post
condition defines the expected result. QoS Template can be
composed into Condition Template to set the execution
environment, such as security context, transaction. Data
Template can also be referred for data validation, result
verification, and data transformation.

Condition Template
Precondition:
hasInput: #CreditCardNo
<script>
Function ValidateCardNo(){ ;}
</script>
Postcondition:
hasOutput: #ExpiredDate
ScriptRef: TransDate.xlst

TransDate.xlst

Fig. 3 Condition Template Sample

Condition Template describes some properties which often
needs to validate data, check constrain at runtime. Usually,
Condition Template instance should provide the rules or logic
by itself. As shown in Figure 3, the logics are built in by such
as XLST with XQuery, JavaScript, SWSL[16] to enable agent
run this logics for checking in the specified scenarios.
B. Operation Template: Each operation can be looked as a
minimum Web Service. The most basic elements to describe
an operation are: operation name, inputs, and outputs. The
name of operation literally implies the purpose of the
operation, so obviously Action Template can be used for
modeling which. Data Templates used to describe the input /
output data items. Operation must be able to provide the meta
info to identify itself if agent or client requests, so Meta
Information Template can be referred to descript it. Condition
Template can also be composed into Operation Template if it
needs to do some work such as input/output validation, data
transformation and execution context setting.
C. Regular Process Template: Consider following situations:
1) To finish a task always need follow some regular process. 2)
There is a complex process to run, but it is no need to make

client involve the detail and only a simple access interface is
required. 3) It need attach some additional services such as
transaction or encryption to the business service at runtime,
but it mustn’t couple with business logic.

Regular Process Template: Reserve Hotel

Login
While:

procondition:
hasUser

GetVipUserData

GetUserData

ReserveHotelif
User.isVip

Input:
HotelName

Inputs:
UserName,
Password Output:

Reserve
Number

Fig. 4 Regular Process Template: ReseverHotel

For such above requirements, it need construct a process to
driven the Web Services flow and provide a simple interface
for access. Such process can be model by Regular Process
Template, as shown in Fig. 4, which is composed of a series
of Operation Template instances with control semantics.

The Regular Process Template instance provides agent a
state machine, which enable agent to drive the whole process
with the state transfer by checking the inputs/outputs or
precondition/postcondition of the Web Services at runtime.
D. Abstract Business Process Template: Many standard or
commonly used business processes can be found in each
domain, which facilitate better collaboration inside domain
and easier accessing outside domain. A typical example is
“withdrawal from ATM”: any ATM always can provide the
same process for withdrawing regardless whichever bank your
credit card belongs to.

Base on above idea, we can model such kind of process
using Abstract Business Process Template. An abstract
process is composed of a series of activities, so Action
Template and Condition Template can be composed as
Activity Template to model the activities, where Action
Template defines the expected behaviour and Condition
Template defines the precondition and post condition for
every activity in the abstract process. Therefore, a sequence of
Activity Template instances can be composed to define an
Abstract Business Process Template instance.

General Business Process Template : Withdraw Money

Activity Template

Action Template
Verb: #Verify
Target:#User

Condition Template
Precondition: hasInput
#CardNumber
#Password
Postconditin: hasOutput
#AccountID

Activity Template

Action Template
Verb: #Display
Target:#Account

Condition Template
Precondition: hasInput
#AccountID

Activity Template

Action Template
Verb: #Update
Target:#Account

Condition Template
Precondition: hasInput
#AccountID
#Amount
Postconditin: hasOutput
#Balance

LogonUser(CardId,Password):Ac
countId

ShowAccountInfo(AccountId):
AccountInfo

DrawMoney(AccountID,Amout):
AccountInfo

VerifyUser(CardId,Password):Acc
ountId

DisplayAccount(AccountId,SessionKey):
AccountInfo

WithDraw(AccountInfoAmount
,SessionKey):Balance

Bank A
Process

Bank B
Process
Fig. 5 Abstract Business Process Template Instance: Withdraw Money

As shown in Fig. 5, unlike Regular Process Template
modeling a regular flow for concrete Web Services, Abstract
Business Process Template is commonly used to model
abstract processes without involving implementation, so it
makes possible to discover and compose Web Services on the
fly across any organization which supports such business
process in some domain. Comparing with Regular Process
Template, Abstract Business Process Template enables a more
flexible and abstract way to run the Web Services on the fly,
because agents will pick up services at runtime. However, the

167

dynamic discovery, composition and invocation are possible
lead to lower performance and increasing the risk of failure.
E. Virtual Web Service Template: Sometimes the physical
Web Services in the system cannot work well in some
situations. Consider the following situations: 1) Some of the
processes are unstable, so the flow of Web Services works for
this process is also changeful. It need provide a stable access
point to ignore the internal unstable processes. 2) For the
Process Template such as Regular Process Template, Abstract
Business Process Template, it need provide a service interface
to enable work as normal Web Service. So all kinds of
semantics such as operation, precondition also need construct.

To address these situations, Virtual Web Service Template
can be created for modeling the virtual Web Service. Virtual
Web Service is used to encapsulate the internal complexity
and uncertainty, and it always provides a simple interface for
access just like using a physically existing Web Service.

Virtual WS Template: WithdrawMonney

Operation Template
hasAction
#WithDraw
hasInput
Data#CardNumber
Data#Password
Data#Amount
hasOutput
Data#Balance

Action Template: WithDraw
Verb: #Withdraw
Target:#Money

Condition Template
Precondition: hasInput
#CardNumber
#Password
#Amount
Postconditin: hasOutput
#Balance

QoS Template
EncryptIon:#DES

 Data Template: Data
#CardNumber xsd:string
#Password xsd:string
#Amount xsd:double

Abstract Business Process Template : WithdrawMoney

Activity
Template
VerifyUser

Activity Template
DisplayAccount

Activity
Template
DrawMoney

Execution
Template

#WithdrawMoney

Fig. 6 Virtual Web Service Template Instance: WithdrawMoney

Fig. 6 shows a Virtual Web Service Template instance
which encapsulates the business process “WithdrawMoney”.
A Virtual Web Service Template instance can accommodate
all types of Semantic Template instances for describing a
virtual Web Service. With these Semantic Templates, agents
can treat a virtual Web Service the same as a normal Web
Service for reasoning and it is able to construct and run the
virtual Web Service on the fly according to the execution
semantics.

Virtual Web Service Template and Process Template
supplement each other. Sometimes agents need run a Virtual
Web Service to act as an activity defined in a Process
Template instance. Vice versa, Process Template can be used
to construct execution semantics for Virtual Web Service
Template. Regular Process Template can model the clear
process for Virtual Web Service, while the abstract or general
process can be modelled by Abstract Business Process
Template. Even the process changed it hardly affect client,
because client only know the interface of the Virtual Web
Service instead of coupling with the internal process.

III. Automate Semantic Template Instances Generating
Since all types of Semantic Templates have been

constructed for modeling Web Service, but it is unfeasible to
build out Semantic Template instances absolute manually for
the mass of Web Services. This section will discuss some key
technologies for analysing and processing corpora so as to
generate the Semantic Template instances automatically.
3.1. Corpora for Generating Instances

In the process of building Web Services a lot software
products were created, such as WSDL, UML production and
requirement documents. Since each kind of software product
has different usage, it can be used to generate different types
of Semantic Template. Fig. 7 shows some software products
corpora used to generating different types of Semantic
Template instances.

Semantic Template Instances

Corpora
ATMUser

VerifyUser(CardNo,Password)

AccountId

DisplayAccount(AccountId)

Account Info

WithDraw(AccountId,Amount)

Balance

Verify User

Display Account

WithDraw

Virtual Web Service Template:
 WithdrawMonneyWSDL

Use Case

Abstract Business Process Template:
WithdrawMonney

Operation Template:
VerifyUser

Fig. 7 Corpora for Generating Semantic Template Instances

Due to the time and resource limitation, our research for
automatic generating Semantic Template instance is major
based on analyzing the WSDL files. Although the WSDL files
are our major research corpora, the methods following
discussed are universal methods to generate Semantic
Template instances from multiple corpora.
3.2. Text Preprocessing

Some of the software products described in natural
language such as requirement or use case documents can skip
this step and direct input for natural language processing, but
some others are not accord with the natural language form.
For instance, the operation name and data type name in
WSDL do not have any separator, and the machine cannot
handle such text. However, if it does some preprocessing over
such text, it could be transformed into natural language text.
A. Text Preprocessing Library: Although the kinds of
software products are different, a series of text normalization
processing steps can always be built to output the text of
natural language form. Therefore it is necessary to create a
library to save preprocessing algorithms. Table 1 lists some
commonly used algorithms for preprocessing.

Table 1 Preprocessing Library
Algorithm Configuration Comment

Naming
Convention
Segment

Segment rules to various
named conventions such
as Pascal/Camel
Convention

Segments text
according to rules

Abbreviation
Expansion

Expansion rules and
abbreviation dictionary
for different domain

Expansion with
dictionary and some
heuristics algorithm.

Prefix/Suffix
Strip

Configure the rules to
strip prefix and suffix.

Strip prefix / suffix
according to rules

B. Customization for Text Preprocessing: With the
preprocessing library, it is unnecessary to implement
preprocessing algorithms from scratch for handling different
kinds of input. A group of preprocessing algorithms can be
selected from library to handle different input. A text
preprocessing container can be created to accommodate and
run the preprocessing algorithms to handle the input text
according to the configuration. Fig. 8 shows that once the

168

preprocessing container is configured appropriate it can output
the text of natural language form.

Preprocess Execution Container

Output
Named Convention

Split
Abbreviation

ExpansionPrefix/Suffix Strip

Raw String
Processed

String

Configuration Configuration Configuration

Input

Fig. 8 Text Preprocessing Model

3.3. Natural Language Processing
Since corpora usually contain much natural language based

information, it must be some relationships can be found out
between Semantic Templates and corpora. Natural language
processing (NLP) is such a kind of technology which can be
used to exploit the relationship. Hence, NLP is one of the
most important steps to generate high quality Semantic
Template instance.
A. Syntax Analysis: In the natural language text, each word
can be tagged by the part of speech such as verb, noun.
Phrases and clauses can also be tagged such as verb phrase,
noun phrase according to the syntactic element. For the
Action Template, the verb property of the template may
originate from a verb in the natural language text; target may
originate from some noun phrase. From this case, it implies
some relationship can be built between the syntactic elements
of natural language and the properties of Semantic Template.

Condition TemplateBehavior Template
verb target precondition: expected input

S

VP

VB

NP PP

NN NN
NPIN

NNNN

update orderticket by order number

Fig. 9 Mapping Syntax Tree to Semantic Templates

Penn Treebank is a project defines a set of tags to annotate
the natural language text. At word-level it can tag every word
in a sentence with POS Tagset[6] (e.g. NN (Noun, singular or
mass), VB (Verb, base form)), and at phrases or clause levels,
a group of Syntactic Tagset are also available for tagging (e.g.
S (simple declarative clause), NP (Noun Phrase)). The method
to identify all of the syntactical elements over the natural
language text and attach corresponding tags is called
Bracketing[5]. We begin with a case, to pick up an operation
name “UpdateTicketOrderByOrderNo” from some WSDL,
and assume it will pass the Text Preprocessing first, and then
using Penn Treebank II Tags annotate it. Fig. 9 shows the
syntax tree for “update ticket order by order number”, the leaf
nodes correspond to the natural language text, and the
ancestor nodes represent syntactical elements for different
levels. From this figure we can find some relationship could
be established between syntax tree and Semantic Templates. It
makes possible to find a way to map phrase to some properties
of Semantic Template schema.
B. Customization Patterns for Extraction: As the previous
section analyzed, the verb and target property of Action

Template respectively originate from VB and NP of operation
name, and the NP dominated by PP can generate a part of
precondition for Condition Template to ensure expected
inputs. However, it probably the tags such as NP, PP are not
unique in a syntax tree, so it is not a kind of one-to-one
mapping relationship between a tag and a semantic property.
A semantic property can map to one kind of tag, but in reverse
direction, one kind of Tag, such as the NP nodes shown in
Fig.9, which are possible mapping to different semantic
properties of Semantic Templates. Following we will exploit a
way to find the exact mapping relationship between phrase
and semantic properties of Semantic Template.

The natural language sentences are always built on certain
syntax structure. Once the syntax structure determined, the
syntactical elements of the phrases are also determined.
Software products are kinds of artifact which often contains
rich natural language features. There are always some criteria
and conventions for creating software products. For example,
the operation name of Web Services usually conforms to the
pattern of “verb+noun”, this is called naming pattern. The
operation name “UpdateTicketOrderByOrderNo” matches
such pattern while “StudentIdToStudentName” matches
another pattern: “NP to NP”. These 2 patterns have different
mapping relationships with Action Template. This show there
are usually some commonly used patterns in software
products, once the pattern is identified, the rule mapping from
syntactical elements to Semantic Template can be determined.

Tregex[4] is a kind of tree pattern expression, which
implements and extends Tgrep2[2]. It can be used for
matching patterns in syntax tree. Hence, it is possible to
extract semantic information from syntax tree by patterns.
Base on above analysis, we have designed an approach to
extract semantic information from the natural language text in
2 stages. The first stage is to identify the syntactic pattern of
the input; the second stage is to extract phrases by matching
the phrase patterns.
Stage1: Identifying Syntactic Pattern

To identify syntactic pattern from input, a group of
checking rules can be defined for each syntactic pattern to
check whether the input can match this pattern. It is to say if
the input can match all the checking rules of certain syntactic
patterns we could say this input belongs mathes this pattern.
The formal description could be defined: If exists a set of
syntactic patterns P={P1,P2,…,Pn} and each Pi have the
checking rules RPi={R1,R2,…,Rn}, then (∃ܑ۾ ∈ ܒ܀∀ ൫(۾ ∈ ܂⋀ܑ۾܀ ∈ ൯ܒ܀ ⇒ ܂ ∈ ܑ۾

For example, the checking rule-set containing one rule for
“verb+noun” pattern can be defined as: “^VB/ >>, (__ !> __)
$,, NP”, which can check if input text can match the pattern: a
phrase beginning with a verb and a noun phrase following
this verb. So the input “Update Ticket Order by Order Number”
will match, while “Student Id to Student Name” will not.
Stage2: Extracting Phrases by Patterns

Once the syntax pattern of the input can be identified, the
syntactic structure of the input is also determined. A couple of
Tregex expressions can be created to locate the node in the
syntax tree by matching defined phrase patterns. The leaves of

169

this node are the expected phrase to be extracted.
Table 2 Tregex Expressions for Extracting Phrases

Phrases Patterns Comments
Pverb /^VB/ >>,

(__ !> __)
Match the most left side verb
node under root

Ptarget NP !>> NP $,,
(/^VB/ >>,
(__ !> __))

Match the noun phrase which is
the right sister of the above node

PexpectedInput NP >> PP Match the noun phrase dominated
by prepositional phrase

Table 2 defines a couple of Tregex rules to extract phrases
for {verb, target, expectedInput} from the input for the pattern
of “verb + noun”. For example, take “Update Ticket Order By
Order Number” as the input, the output will be: {verb =
update, target = ticket order, expectedInput = order number}
3.4. Matching Referred Ontology

After NLP, a set of words or phrases mapping to the
properties of Semantic Template has been extracted. The key
problem has transformed to find the most matched ontology
for these words or phrases. In the whole matching process,
similarity algorithms, similarity score measure strategies and
matching strategies should be considered, and an appropriate
combination can be found by balancing the time and quality.
The ontology has the maximum similarity score with the
natural language phrase can be the good candidate referred by
the semantic properties of Semantic Template instances.
A. Similarity Algorithms: In order to find out the most
matched ontology, it should provide a lot of similarity
comparison methods for matching from different perspective,
such as Lexical Comparison (e.g. Levenstein, Ngram),
WordNet Comparison (e.g. Lin, Jiang, Resnik). A similarity
library can be funded to accommodate all of the commonly
used similarity algorithms. With this library, various
similarity algorithms can be selected to handle different types
of inputs instead of create them every time.
B. Score Measure Strategies: It is with contingency to
calculate the similarity score by only choosing one kind of
similarity function. To eliminate such contingency, a group of
various similarity functions should be selected to calculate the
similarity scores respectively. Some measure strategy should
be provided to deal with these scores and return a final
similarity score. Following lists some score measure strategies
which are used to handle the score set: Scores={S1,S2, …,Sn},
1. AverageScore = ∑ Score [i]n

i=1|Score |
where, |Score| is the length of the set, AverageScore is
average value of the score set

2. MaxScore = Max(Score[i])
where, MaxScore is the max similarity in the score set

3. WeightScore =
∑ Wi∗ Score [i]n

i=1 i∑ Wi
n
i=1

where, Wi is the weight for each similarity score,
WeightScore is the weight based similarity score.

C. Phrase Matching Strategies: A phrase consists of a set of
words, so it can be matched in 2 levels: 1) Chunk Level, the
phrase will be taken as a whole string for comparison. 2)
Word Level, the phrase will be taken as a set of words and it

will be compared as a word set. Word Level matching is
complementary with Chunk Level matching. For example,
there are 2 phrases “CS Department” and “Department of CS”,
Chunk Level matching is probably returning a low similarity,
but Word Level matching will take them as 2 word sets return
a high similarity.

For Word Level Matching, the phrase for matching can be
split as a word set: WordSet(wr)={w1,w2, … ,wn}, and the
certain label of ontology for matching can be taken as
WordSet(ot)={o1,o2, … ,om}, these 2 word sets can be treated
as a bipartite graph, then the maximum matching can be found
in the bipartite graph. That is the best matching of words in
these 2 word sets, the similarity of the phrase can be got. For
example, a demonstration method shows bellow:
1. Sim[m][n] = Sn൫WordSet(wr) × WordSet(ot)൯

where, Sn represents some of the similarity algorithm,
Sim[m][n] is the similarity Cartesian product of 2 word
sets

2. MaxScore = FMax Matching (Sim[m][n])
where, FMaxMatching represents the maximum matching
function

3. Similarity = 2∗MaxScore|WordSet (wr)|+ |WordSet (ot)|

where, |WordSet| is the length of the word set
When to use Chunk Level or when to use Word Level

Matching, it depends on the inputs and actual situation. Even
these 2 matching strategies can be combined use if required.
D. Customization for Matching: To enable a flexible way to
combine similarity algorithms, score measure strategies and
matching strategies for similarity matching and a feasible way
to take multiple data source as inputs regardless it is plain text,
structure or semi-structure data, so it need build a universal
flexible framework to achieve this goal. Our approach to
achieve this goal is through extending SPARQL[1], because
SPARQL is widely used as a general ontology query language
in semantics world. One of the greatest benefits is it is
unnecessary to modify the logics in program to handle
different corpora or ontology models; instead the only thing
need do is to update the SPARQL statements.

PREFIX sjtu: <java:cn.edu.sjtu.query.property.>
PREFIX matcher: <java:cn.edu.sjtu.similarity.matcher.>
PREFIX measurestring: <java:cn.edu.sjtu.similarity.measure.string.>
PREFIX measure: <java:cn.edu.sjtu.similarity.measure.strategy.>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?ontoref ?simscore
{
GRAPH ?graph
{ ?ontoref rdfs:label ?rdfslabel .}

?input sjtu:lowercase ?varWord .
?cmp sjtu:lowercase ?rdfslabel .
?leven sjtu:instance measurestring:Levenstein .
?lin sjtu:instance measurestring:LinSimilarity .
?resnik sjtu:instance measurestring:ResnikSimilarity .

?mscore sjtu:instance measure:MaxScoreMeasure;
 sjtu:arguments (?leven ?lin ?resnik) .

?m sjtu:instance matcher:MatchingAvgMatcher .
?m sjtu:arguments (?mscore ?input ?cmp) .
?m sjtu:score ?simscore .
FILTER (?simscore >= 0.7)}
ORDER BY DESC(?simscore) LIMIT 1

Similarity
Algorithms

Score
Strategy

Matching
Strategy

Threshold
Setting

Fig. 10 SPARQL Extensions for Matching Ontology

170

Fig. 10 shows the method that defines Similarity Algorithm,
Score Strategy and Matching Strategy as a part of SPARQL
statement. The natural language phrase can be bound to the
input variable, and then run this configured statement to
retrieve the most matched ontology from ontology models.

Once the ontologies for semantic properties are retrieved,
they can be filled into Semantic Template instance according
to the schema. The Semantic Template instances need be
persistent for further use. It can be saved as a file or persisted
into ontology database[21].

IV. Experiment and Evaluation
In the prototype system, we take WSDL files as the corpora

for generating the instances of Action Template, Condition
Template and Data Template automatically. As show in Fig.11,
our system will generate SAWSDL through annotating the
WSDL with these Semantic Template instances

WSDL

Types
<xs:simpleType name="DeptTime"
sawsdl:modelReference="#DeptTime">

Operations
<wsdl:operation
name="QueryDepartTimeByFilghtNo"
sawsdl:modelReference
="#QueryDepartTimeByFilghtNo">
</wsdl:operation>

Semantic Template Instances

Data Template: DeptTime
OntoReference: #DepartmentTime
DataTime: xsd#datetime

Operation Template: QueryDepartTimeByFilghtNo
hasAction:#QueryDepartmentTime
hasCondition:#QDTConditon

Condition Template Intance: QDTConditon
ExpectedInput: #FilghtNo

Action Template: QueryDepartmentTime
Action: #Query
Target: #DepartmentTime

Fig. 11 Annotating WSDL using Semantic Template instances

In this experiment, we obtained the WSDL files and
domain ontology files from Interne. Theoretically, it should
have a complete domain ontology base which can cover all
the concepts for each domain, but it impossible for us to
create them in this experiment. When the prototype system
generates the Semantic Template instances for some domain,
it will merged domain ontology files into a whole ontology
model to improve the recall ratio.
4.1. Resource for Experiment

Table 3 WSDL and Ontologies for experiment

Domain WSDLs
Files

Operations
of WSDLs

Ontology
Files

Ontology
Files Size

Travel 7 62 7 140KB
Weather 9 66 4 1260KB
Publication 11 116 14 393KB
Finance 20 396 10 486KB
As shown in table 3, we categorize the WSDL files and

domain ontologies into 4 domains: travel, weather, publication
and finance. The ontologies for travel and weather are
frequently mentioned in many papers about Semantic Web for
experiments, so they are optimized and very stable. Actually,
the ontologies for publication are also very widely used, such
as Dublin Core. The ontology files for Finance is a little trivial,
we can’t find a kind of well-known ontology for this domain.
WordNet Verb Ontology is also provided to generate verb
semantic property for Action Template instances, which is
extracted from [20] and it is domain independent.
4.2. Evaluation

We ran the test on each domain respectively, and evaluated
the result by Recall and Precision. The Recall and Precision
measures are obtained as follows:

RecallX = RT X
RA X

, PrecisionX = RC X
RTX

Where, RAX is the set of all semantic property X should be

retrieved. RTX is actually the set of semantic property X
retrieved. RCX is the set of correctly retrieved semantic
property X.

Fig. 12 Recall and Precision for Action Template

Fig. 13 Recall and Precision for Condition Template

Fig. 14 Recall and Precision for Data Template

Fig. 12 depicts the recall and precision for generating the
Action Template instances. The precision of “Verb” is very
close to 1, because it matches ontology from WordNet Verb
Ontology which is almost a complete ontology contains all the
concepts of verb. “Target” is highly related to the domain
concepts. Due to the incompleteness of the domain ontology
for Finance domain, the recall of “Target” is only a little
above 10% while benefitting from relative complete domain
ontology the recall and precision of “Target” in Travel and
Weather domain are above 60%.

Fig. 13 depicts the recall and precision for generating the
“ExpectedInput” property of the Condition Template
instances. In this experiment, this property is extracted from
the preposition phrase in operation name. To a certain extent,
the high recall proves the feasibility of extracting the phrases
from natural language input by patterns. NLP can extract
most of phrases with patterns, but if there is no sufficient

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Travel Weather Publication Finance

Recall
Verb

Precision
Verb

Recall
Target

Precision
Target

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Travel Weather Publication Finance

Recall
ExpectedInput

Precision
ExpectedInput

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Travel Weather Publication Finance

Recall
Data

Precision
Data

171

domain ontology such as in Finance domain, it still cannot
map to the correct ontology, so the precision is very low.

Fig. 14 depicts the recall and precision for generating the
Data Template instances. Data Template instances is highly
domain concepts relevant, the more completeness of the
domain ontology the higher precision will be, so the recall and
precision for the Finance domain got the lowest rank again
with the precision around 20%.

From this experiment, we can conclude the complete extent
of the ontology has the direct impact on generating Semantic
Template instances. It is impossible to present the detail of
every step and configurations for our experiment in this
section but the results prove that it is a feasible way to
automatically generate most types of Semantic Templates.

V. Related Work
The well-known frameworks related to our work for

Semantic Web Services, including WSMO[10], OWL-S[7],
WSDL-S[11], SWSF[8]. WSMO is based on WSMF[3],
which aims to create ontologies for describing various aspects
related to SWS, with a more defined focus: solving the
integration problem[14]. WSML[9][19] is a language takes
into account all aspects identified by WSMO. WSML
comprises different formalisms, most notably Description
Logics and Logic Programming, in order to investigate their
applicability in the context of ontologies and Web Services.
OWL-S was the first major ontology for SWS, which defining
a set of basic classes and properties for describing Web
Services to enable agents to automatically discover, invoke
and compose. SWSF, which includes two major components:
SWSL[16] and SWSO[17], was devised to provide a full
conceptual model and language expressive enough to describe
the process model of Web Services, and to address the
shortcomings of OWL-S in this regard. WSDL-S was created
in the METEOR-S[18] project for annotating WSDL with
semantic information. SAWSDL[15] is derived from WSDL-S,
it does not provide a concrete model for SWS, instead it
makes the assumption that the concrete model will be
expressible as annotations in WSDL. There are already some
works on OWL-S using SAWSDL for grounding[12][13].

In our approach, we propose to model Semantic Web
Service using Semantic Template. However, we do not restrict
the language to build Semantic Template. Besides RDF/S,
OWL, both WSML and SWSL are rich in logical expressions,
which can be good candidates to construct Semantic Template.
Since it is able to construct a composite Semantic Template to
describe any aspect of Web Service, it is very suitable to
grounding the Semantic Template instance into SAWSDL to
enable agent can locate it from “modelReference” for
reasoning. Semantic Template also support modeling
composite process more flexible than OWL-S.

VI. Conclusion and Future Work
In this paper, we proposed the Semantic Template for

modeling Semantic Web Service. Base on the features of
Semantic Template, it provides an effective way to model any
aspect of Web Service avoiding the redundancy and
inconsistency. We constructed some types of basic and

advanced Semantic Templates to model some aspects of Web
Service to enable agent intelligent discovery, composition and
invocation. We also construct a flexible framework for
automatic generating Semantic Template instance. Finally, the
experiment proves that it is feasible to build various types of
Semantic Templates for modeling Semantic Web Services.

In our recent work, we took WSDL as the corpora and it
limited the types of Semantic Templates can be automatically
generated. In our future work, we plan to support most of
UML artifacts and other types of documents as the corpora.
This will enable generate more complex Semantic Templates.
Further, we plan to build a whole framework base on
Semantic Templates to enable the all the functions of
annotation, discovery and composition.

Acknowledgement
This work was supported by China Basic Research Project

(under Grant No. 2003CB317005), and the National
High-Tech Research and Development Plan of China (under
Grant No. 2006AA04Z152, 2007AA01Z137).

References
[1] SPARQL Query Language for RDF, Available at

http://www.w3.org/TR/rdf-sparql-query/, 2008
[2] Douglas L. T. Rohde , TGrep2 User Manual, 2005
[3] Dieter Fensel, Cristoph Bussler, The Web Service Modeling Framework

WSMF, 2002
[4] Roger Levy, Galen Andrew, Tregex and Tsurgeon: Tools for Querying

and Manipulating Tree Data Structures, 2006
[5] Ann Bies, et al., Bracketing Guidelines for Treebank II Style Penn

Treebank Project, 1995
[6] Beatrice Santorini, Part-of-Speech Tagging Guidelines for the Penn

Treebank Project, 1990
[7] The OWL Services Coalition. OWL-S 1.1. Available at

http://www.daml.org/services/owl-s/1.1/, 2004
[8] Semantic Web Services Framework. SWSF Version 1.0. Available from:

http://www.daml.org/services/swsf/1.0/, 2005
[9] J. de Bruijn, et al., The Web Service Modeling Language WSML, 2005,

Available at http://www.wsmo.org/TR/d16/d16.1/v0.21/
[10] Roman, D., et al., Web Service Modeling Ontology, Applied Ontology

1(1), 77–106 (2005)
[11] Akkiraju, R., et al., Web Service Semantics - WSDL-S, Tech. rep.,

LSDIS Lab. (2005), http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/
[12] Martin, D., Paolucci, M., Wagner, M., Bringing Semantic Annotations

to Web Services: OWL-S from the SAWSDL Perspective, 2007
[13] Paolucci, M., Wagner, M., Martin, D., Grounding OWL-S in SAWSDL,

2007
[14] Rubén Lara, Dumitru Roman, Axel Polleres, Dieter Fensel, A

Conceptual Comparison of WSMO and OWL-S, 2004
[15] Semantic Annotations for WSDL and XML Schema, Available at

http://www.w3.org/TR/sawsdl/, 2007
[16] Semantic Web Services Language (SWSL), Available at

http://www.w3.org/Submission/SWSF-SWSL/, 2005
[17] Semantic Web Services Ontology (SWSO), Available at

http://www.w3.org/Submission/SWSF-SWSO/, 2005
[18] K. Verma, R.A., J. Miller, A. Sheth, METEOR-S - An Environment for

creating Semantic Web Processes, VLDB Journal, 2004
[19] Dumitru Roman, et al., WSMO, WSML, and WSMX in a Nutshell, 2006
[20] RDF/OWL Representation of WordNet, Available at

http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html,
2006

[21] H.Zhuge, et al., Resource Space Model, OWL and Database: Mapping
and Integration, ACM Transactions on Internet Technology, 2008

172

