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Abstract. Sometimes, explicit relationships between entities do not provide 
sufficient information or can be unavailable in the real world. Unseen latent re-
lationships may be more informative than explicit relationships. Thereby, we
provide a method for constructing latent informative links between entities, using 
their common features, where entities are regarded as vertices on a graph. First, 
we employ a hierarchical nonparametric model to infer shared latent features for 
entities. Then, we define a filter function based on information theory to extract 
significant features and control the density of links. Finally, a couple of sto-
chastic interaction processes are introduced to simulate dynamics on the net-
works so that link strength can be retrieved from statistics in a natural way. In 
experiments, we evaluate the usage of filter function. The results of two exam-
ples based on mixture networks show how our method is capable of providing 
latent informative relationships in comparison to explicit relationships. 

1 Introduction

Networks, such as World Wide Web, social networking sites (SNS), and bio-networks, 
have become integral parts of our everyday life. In order to understand such complex 
networks in-depth, it is necessary to reveal their subtle structures. Numerous research 
methods such as machine learning, graph theory, information theory, and statistics have
been used to study complex networks [1]. Most current research on complex networks 
are based on the topology analysis of the network, e.g. the small world phenomenon
[2]. All these methods are sensitive to link distribution because the complexity of a 
network is mainly determined by links other than vertices. In practice, links are often
defined according to some intuitive relationships such as hyperlinks and citations. 
Unfortunately, the explicit links may not provide sufficient information and can even
be unavailable in the real world. Some reasons are: link absence is ubiquitous, e.g. a 
web page can only accommodate a limited amount of hyperlinks and there is no
guarantee two relevant pages are linked; the presence and strength of a link is volatile
with given conditions, e.g. the partnerships, for researchers, may vary with different 
research topics. Sometimes, unseen or unformed links also play significant roles, e.g. 
two researchers may both focus on a common research topic but have never realized it; 
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learning of the latent relationship may help them to find each other for collaboration. 
Therefore, discovering latent informative links is an essential and meaningful task.

Bayesian network (BN) is applied to model the relationships among features, whose 
structure can be constructed by some learning methods [3, 4]. BN assumes that an
underlying structure encodes the joint distribution of variables by conditional inde-
pendence assertions. The data are generated over the joint distribution so that it may
recover the structure from observed data. A BN can be viewed as an ecosystem where a
set of dependent features resides, whereas in our model the observed data between
entities are independent so that every entity can be regarded as an ecosystem. An event 
observed on a BN only has impact on intra-ecosystem features and will never propagate
to other ecosystems, so structure learning methods for BN cannot help infer relation-
ships over inter-ecosystems like our model.

Most current link prediction methods [5] predict unseen links by analyzing observed 
links, where the observed links often come from structural properties of networks [6], 
relational features inside relational databases or linked data on the web [7, 8]. As 
analyzed above, given a set of entities, neither may well-collected observed links be
available nor does the relational structure across entities exist, since the observed data 
for each entity are independent. Under these conditions, none of these methods can 
work. Some recent works which predict links through infinite statistical models [9, 10] 
are most similar to our method. However, these prediction methods completely depend
on observed links over latent features. In this paper, we provide a generative method to
enable inferring linkages from observed data lack of well-collected observed links. 

2 Latent Features Inference

Statistical models are often used to infer latent features for a set of entities from
abundant observed data, e.g. Latent Dirichlet allocation (LDA) [11] is a representative 
and prevalent finite parametric model for document modeling and it has also been 
applied in many other areas, e.g. image processing [12]. However, choosing the
number of mixture components is difficult for finite models and also for LDA [13]. In 
comparison, the nonparametric mixture model, typically, Dirichlet process (DP) model
[14, 15] provides a solution to infer the number of latent components automatically, 
alleviating the difficulties of model selection. Our method would like to find common 
features shared across entities, but the utilization of independent DP for each entry are 
not qualified [16]. We hence resort to hierarchical models [16, 17], where the parent 
model in the hierarchies serves as a discrete base measure so that its child models may 
draw common atoms with a positive probability. 

2.1 Model Construction

Since links in the real world are usually generated over common features that entities 
contain or work on, this assumption leads us to infer common features shared across 
entities by a hierarchical model. Recently, many hierarchical statistical models have 
been developed, typically, the hierarchical Dirichlet process (HDP) [16] which has 
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been applied in many areas such as information retrieval, topic modeling, statistical 
genetics, and speech recognition [17]. 

We construct a three-level HDP to infer latent features as shown in Fig. 1. The top 
level is graph level, which provides a global view of all latent features on graph. The 
second level is vertices level, which focuses on features for each vertex. The bottom 
level is data level where the features for each observed data group can be retrieved.
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Fig. 1. The graphical model of 3-level HDP for inferring shared latent features

In Fig. 1, � is the prior distribution over all infinite latent features. �
 is distrib-
uted as a DP with concentration parameter �
 and base measure �. �
 is a global 
discrete measure over all latent features for the whole graph, which acts to tie together 
common features across the vertices. |�| is the number of vertices. Each ��� is dis-
tributed as a DP with concentration parameter �� and �
. ��� is a discrete measure 
over the latent features associated with vertex ��. |���| is the number of training data 
groups for vertex ��. Each ���� is distributed as a DP with concentration parameter �� and ���. ���� is a discrete measure over the latent features for a training data 
group ���� at data level. Latent features ���� are sampled from ����. ������� is the 
distribution of the observations ���� given ����. 
2.2 Model Inference

We present the inference based on the metaphor of Chinese restaurant franchise [16, 
17]. First, we denote latent features �
 for the graph, ��� for each vertex �� and ���� for every data group � associated with �� . Then, let � denote unique dishes
(mixture components) served in the entire franchise, !" denote the number of tables 
serving dish # (# $ �) in all vertices-level DPs, %��" denote the number of tables 
serving dish # in all &'��’s child DPs at data level and (���" denote the number of 
customers (observations) eating dish # in &'���. Analogous to inferring the posterior 
by HDP samplers [16, 17], a brief Gibbs sampling scheme is presented as follows: 

� Sampling weights for �
, ���, ����:  )
"*, … , )
"+, )
"-/0|�
, �
 1 &23245678�!"*, … , !"+, �
� 9 = |�|)��"*, … , )��"+, )��"-/0|��, ��� 1 &23245678���)
"* + %��"*, … , ��)
"+ + %��"+, ��)
"-/0�)���"* , … , )���"+ , )���"-/0|��, ���� 1                                  &23245678���)��"* + (���"* , … , ��)��"+ + (���"+ , ��)��"-/0�  

�
|�
, � ~ &'
(�
, �)���|��, �
 ~ &'��(��, �
)                                            > = 1, @ , |�|����|��, ��� ~&'���(��, ���)                                             � = 1, @ , |���|����|���� ~ ����           2 = 1, @ , A����A����|���� ~ �������        ���� $  ����
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� Sampling ����, %��" , !" and update (���" , �����|��, ����, B)���" , (���" C 1                            &2D43787 EF��)���" + (���" G H"������IJKLMNO" ������P"Q"R,…,"S,"TUV  

where (���"TUV = 0, JKLMNO" ������ is conditional density of ���� under component #
given all observations except ���� ; H"������ = 1 if ���� belongs to # and 0
else; After drawing dish for every ����, (���"  needs to be updated; � also should 
be updated if a new dish is added or some dish is deleted from the franchise. %��" = X %���"|�YM|�Q* , where %���" |��, )��" , (���" 1 AZ['���)��" , (���" �A, Z['(\, () is 

Chinese restaurant process with the concentration parameter ] and n customers 
entering, d^_`a is the number of tables sampled from Z['���)��" , (���" �!" = X !�"|�|�Q* , where !�"|��, )
", %��" 1 AZ['���)
", %��" �A
After a sufficient burn-in period, a group of samples b are drawn. Then, we select a 

sample with 9 features, where 9 is the most frequent number of features occurring in b, and then the weights for ����, ���, �
 are estimated as follows:ce���" = (���" X (���"�+�Q*f , ce��" = %g��" X %g��"�+�Q*f , ce
" = !h" X !h"�+�Q*i   (1) 

where %g��" = X %g���"|�YM|�Q* , %g���" = jFZ['���)��" , (���" �I , !h" = X !�"|�|�Q* , !�" = jFZ['���)
", %��" �I , j[Z['(\, ()] = X \ (\ + > G 1)i-�Q* for ( m 1 and 0 else. 
Finally, the latent features for graph, vertices and data groups are denoted: �
 = X ce
"H��
"�"o� , ��� = X ce��" H����" �"o� , ���� = X ce���" H�����" �"o�  (2) 

where ce "H(�) represents weight ce " focusing on feature �. 

3 Latent Links Reconstruction

The most straightforward method to create links between two vertices is to check if 
existing common features. A single link cannot indicate which common features 
making two vertices connected so we need to construct multilink over each shared 
feature and label their strengths.

3.1 Link Inclination

We name the link constructed on a common feature # as #-oriented links. Intuitively, 
if an entity focuses attention on #, it tends to build #-oriented links with other entities
which also highlight #, even more so if they have parallel #-relevant backgrounds 
(their #-relevant features are similar). For example, if an economist needs to find 
partners who can help him with mathematical modeling, he is more willing to collab-
orate with a professor of mathematics with an economics background than a professor 
who is skillful in mathematical model construction for biology. Another factor affect-
ing interaction is preference. That is, an entity may prefer to interact with some entities 
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and decline to interact with others, e.g. due to a confidentiality agreement. Hereby, we 
measure the inclination of building a link from �� to �� by two parts: 1. the attraction
for interaction; 2. the preference for interaction. With such assumptions, we formally 
define a quantified function to score the link inclination: 

6D"(�� p ��) = qD2r"(��, ��) s� + ) t D2u"�376"(��), 376"(��)�vw t x"(��, ��) (3) 

where D2r"(t,t) is a function to measure how significant the feature # is to the given 
nodes; 376"(t) is a function to retrieve #-relevant features; D2u"(t,t) is to measure 
similarity between two sets; � gives a base weight for D2r"(t,t) and ) is to control 
the proportion of D2u"(t,t) to enhance D2r"(t,t) function; x"(t,t) is to measure the 
interaction preference. For different applications, the link inclination function may 
have different definition. The implementation of this paper is given as follows: D2r"(��, ��) = J(c�)J(c�), where c� = c��" uy�"�$�zO�c��"��f , J(c) = /{V*}/{V376"(��) = �����" �, D2u"�376"(y), 376"(�)� = ��s�zO� v��s�zM� v���s�zO� v�   x"(��, ��) = � + 6�r[#(�� p ��)] 6�rFuy��-$��#(�� p �-)�Ii
where J(c�) is the logistic function given the relative weight c� of feature ���"
as input; �����" � is the direct neighbors of ���" on a Chow-Liu tree [4] induced 
by mutual information between each pair of features of �� , i.e. �x����"�, ���"-�"��"-; � of x"(��, ��) is a constant to give a base measure and #(�� p ��) is the times of interaction in history and 6�rFuy��-$��#(�� p �-)�I
is used for normalization.

Given a latent feature #, a network can be constructed by connecting each pair of 
vertices (y, �) with two links y p � and � p y. Note that if selflinking is allowed, 
there is an additional selflink on each vertex. However , weak links are often negligible
in the real world instead of such a complete graph. The inclination of building a link 
between vertices is measured by Eq. 3, so we can prune the links with low inclination
scores. For example, we first computer the 6D"(y p �) of each pair of vertices, and 
then we order these scores so as to remove the lowest scored links with some given 
percentage. The pruned network is denoted as �", named #-oriented base network. 
Hence, we can obtain total 9 base networks, where 9 = |�|. 
3.2 Dynamics on Mixture Network

The union of the base networks �" forms a multigraph, formally � = �  �"" , which 
is named Mixture Network. Now we need to determine the strength of each link on �
and the bundle of links from one node to another are the mixture of #-oriented links 
union of all base networks, so the interaction process on � need to involve the mixture 
of features. Normally, the formation of links in the real world is under the action of 
some long-run stochastic process. If we can simulate the dynamics on �, then the 
statistics over interactions will show link strength. In this paper, we borrow the flow 
network to interpret the interactions on � because each interaction can be regarded 
as a unit of flow and calculating the strengths of interactions is equivalent to retrieving
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the distribution of flow. Following we designed a stochastic interaction process (SIP)
based on random walk. 

Briefly, this SIP can be described a recursive 2-step interaction, 1st step: a node first 
chooses a feature # for interaction; 2nd step: it choose an interaction target for # (the 
choices of # and targets are under some conditional distributions). If all nodes on �
follow such 2-step interaction constantly, the statistics of the flow distribution can be 
retrieved. To model such SIP and retrieve the long-run steady distribution ���, we 
simulate the dynamics as a process of flow regulation system (FRS), where each node 
is regard as a switch and following tactics are always taken by FRS: 
T1. Switch y outputs flow by two selective steps: 1. choosing a base network �"~J���(��|y) for outputting; 2. choosing the outflow from y to � on �"

with a probability '"(�|y); 
T2. If Switch y selects �" as the first step in T1, but y has no outflow on �", then  y will transport flow to a uniformly random selected flow on �"; 
T3. Each flow may be pumped into a uniformly random selected flow on some �"

with a small probability �, where �"~J���(��). 
In above tactics, T2 can be viewed as a special case of T1. In T1,T2, the selection of 
base network �" for outputting flow is determined by each switch under conditional 
densities J���(��| t), so T1,T2 are local regulation tactics taken by each switch. T3 is a 
global regulation tactic; the system regulates all flows on � with probability �, and J���(��) is a global distribution for system to select a network �" for output. The 
definitions for J���(��| t) and J���(��) can be various, as shown later.

FRS implies the Markov chain model �� = ����, where �� is the flow distribu-
tion over all links of �. For clarity, we can rewrite above Markov chain model as the 
form using block matrices:

����R����S
� =  (1 G �) ¡¢�£��R��£��S

¤ + ¢ ¥��R¦��R§ #¨��Rf�¥��S¦��S§ #¨��Sf ¤© + � ¢ ¥��Rª��R§ #¨��Rf�¥��Sª��S§ #¨��Sf ¤« ����R����S
�

where 9 is the number of base networks composing �, #¨��O is the number of arcs 
on �"�, #¨� = X #¨��O is the number of arcs on �; ���O is a #¨��O-dimensional
vector to describe the flow volume of each link on �"� ; �£��O is a #¨��O × #¨�
matrix, �£��O(> p 6) =  J�����"�|!¬­(>)� t '"��!¬­(6)|!¬­(>)� here !¬­(6) is a 

function to retrieve the to-node of the link 6 and '"��!¬­(6)|!¬­(>)� =6D"�!¬­(6) p !¬­(>)� X 6D"(!¬­(6) p !)®$��f ; ¥��O is a #¨��O-dimensional vector of

ones; ¦��O§ is a #¨�-dimensional row vector, 5��O§ (>) = J�����"�|!¬­(>)� if !¬­(>)
has no outflow on �"� and 5��O§ (>) = 0 otherwise (see T2); ª��O§ (>) = J���(�"�)
(see T3). The transition probabilities for the Markov chain are aperiodic and irreducible
under such construction [18], so a unique solution of the stationary distribution ��� is
guaranteed. There are various methods to solve such ergodic Markov chain problems
[19, 20], e.g. the Power Method.

Trivial Mixture Network (TMN). If � is the union of all base networks �" and J���(�"�|��) = ce��"� X ce��""$�zMf (local regulation tactics, biased with the features 
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weights of each �� ), J���(�"�) = ce
"� X ce
""$�¯f (global regulation tactics, biased 
with the features weights of graph level), where ���, �
, ce��" , ce
" are given in Eq. 2, 
then the mixture network derived under such setting is named Trivial Mixture Network, 
denoted as �§°+. Thus naming is based on the fact that the construction of �§°+ only 
depends on the observed data of vertices. TMN depicts the intrinsic relations among all 
vertices.
Conditional Mixture Network (CMN). Given a mixture of features ±� =X c²"H��"�"$� , we set J���(�"�|��) = J���(�"�) = c²"� X c²""$�i (the selection of 
output network is fully biased with the given condition ±� for both local regulation 
tactics and global regulation tactics), where c²" is the conditional weight of feature #
given in ±�. Thus constructed mixture network is named Conditional Mixture Net-
work, denoted �|±�. CMN depicts the conditional interactions in the context of ±�. 

4 Experiments

We describe two experiments based on TMN and CMN respectively in this section. 
The NIPS dataset [21] is used for experiments, where we took the researchers who 
have published more than 10 papers on NIPS from 1987 to 2003.. 
Example for TMN over Researchers. In this example, we try to find latent links
among researchers. The latent links between researchers may be coauthorships, cita-
tions, learning others’ work, potential collaborations and so on. We searched the NIPS 
dataset, totally retrieving 57 authors who published more than 10 papers. These 57
authors are set as vertices; the observed data groups for each vertex are the papers the 
author published. The HDP used to infer research topics (latent features) has been
depicted in Fig. 1, where � is symmetric Dirichlet distribution with hyperparameter
0.5 over research topics. For graph level DP, the concentration parameter �
 is sam-
pled from ³(5,0.1) following the setting in [16]. 57 DPs in vertices-level are used to 
infer research topics of authors accordingly, where ��~³(5,0.1). The data-level DPs 
infer the features for each paper, ��~³(0.1,0.1). As to the link inclination function 
(Eq. 3), here we set � = 0.8, ) = 0.2 and selflinking is not allowed for the function. 
Each base network �" is to model the interactions over topic #, which is constructed 
according to section 3.1. The construction of transition matrix for TMN follows section 
3.2 and � is set to 0.1. Finally, we took Power Method to compute out the solution of ���·¸S. 

Fig. 2(a) shows the latent interaction distribution over �§°+. The ith row depicts the 
states of latent interactions with all authors initialized by the ith author. The lighter an 
entry, the more latent interactions the author has, with the other author in the corre-
sponding column. Fig. 2(b) shows the true coauthorships among 57 authors in the 
dataset; the lighter an entry, the more papers were coauthored. In comparison to the
work for predicting coauthorships [10], �§°+ enables to discover more underlying 
latent relationships other than explicit coauthorships. For instance, it can tell what 
research topics most probably cause the latent interactions between two authors and 
how much amount of interaction is over each topic; it also may help to find the most 
potential coauthors, where no coauthorship exists between two researchers but the 
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latent interactions are strong; vice versa, it can detect anomalous coauthorships, where 
latent interactions are weak but true collaborations exist. As the interactions between 
two nodes are model by a mixture of links on �§°+, Fig. 2(d) illustrates the top 3 
strongest interactions among authors, where the histograms display the volume of 
flows over each base network. Each research topic of the base network is indexed by a 
number as shown in Fig. 2 (d). Additionally, the predicted topological map of �§°+
is demonstrated in Fig. 3, where the thicker the line, the more possible collaboration 
between two authors (a) and Fig.4 (a) illustrates the latent top 10 most popular 
authors (receiving the largest inflows volume) for collaboration in all given areas. 
Example for CMN over Researchers. In this example, we try to find latent interac-
tions under the research area “Learning Theory (LT)”. The training data of this area are 
all papers in the section of Learning Theory, NIPS 2001-2003. When constructing 
HDP, besides 57 DPs for authors, we add an additional DP into vertices level for in-
ferring the latent features for LT and its child DPs at data level are used to model all the 
papers of LT accordingly. Other settings are the same as TMN. The inferred 57 mix-
tures of features for authors are still used to construct base networks �¹º»¼U while the 
latent features for LT (±�½) is set as the condition to construct the CMN �|±�½. 

Fig. 2(c) shows the result of �|±�½, which demonstrates the latent interaction dis-
tribution under the research area LT. We find that it is apparently different from �§°+
(Fig. 2(a)). TMN depicts the interactions biased with the research interests of authors 
themselves, and it covers all base networks without additional constraints. In contrast, �|±�½ depicts the interactions constrained under the area LT where authors tend to 
have latent interactions with others who focus on the area LT (light columns). If some 
author has no research interest under LT, then he neither initializes interaction nor 
accepts interaction on �|±�½ (both the row and column are dark). Akin to �§°+, the 
predicted topological map of �¾°+ is demonstrated in Fig. 3 (b) and Fig.4 (b)
illustrates the latent top 10 most popular authors for collaboration in the area LT. 

(a)                      (b) (c) 

(d)

Fig. 2. (a) flow distribution over �§°+ (b) coauthorships (c) flow distribution over �|±�½ (d) 
volume of flows on each base network of the top 3 strongest links on �§°+
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5 Discussion and Conclusion

We have presented the latent interaction network detection method which combines 
HDP and SIP. In this paper, we fully infer latent links from observed data, but the 
observed links may also help to improve performance, e.g. we can model preference 
distribution x"(t,t) in Eq. 3 over observed links. Moreover, the latent features are 
homogenous in this paper, e.g. topics and interests. However, the relationships in a
complex system are always determined by various factors, so we must describe it using
a group of heterogeneous features. HDP combined with India buffet process [22] may 
model such complex system as a hyper-mixture model over a set of heterogeneous
mixtures. Apart from the examples given in experiments, we have been applying the 
reformed models in SNS, web services and bio-networks.

(a)                                 (b)

Fig. 3. (a) Topological map of �§°+, only showing the top 100 strongest links; the thicker 
the line, the greater the volume of interactions; actually, each link on this map is composed 
of a mixture of links coming from each base network. This map does not show all of the 57 
authors, where it only shows the authors connected by these top 100 strongest links. (b) 
Topological map of �|±�½, only showing the top 100 strongest links; the thicker the line, 
the greater the volume of interactions under area LT. This map only shows the authors 
connected by these top 100 strongest links.

Fig. 4. (a) Top 10 authors who receive the largest inflows volume on TMN (b) Top 10 
authors who receive largest inflows volume on CMN in the area LT
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