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Abstract—Choice modeling (CM) aims to describe and predict 
choices according to attributes of subjects and options. If we pre-
sume each choice making as the formation of link between subjects 
and options, immediately CM can be bridged to link analysis and 
prediction (LAP) problem. However, such a mapping is often not 
trivial and straightforward. In LAP problems, the only available 
observations are links among objects but their attributes are often 
inaccessible. Therefore, we extend CM into a latent feature space 
to avoid the need of explicit attributes. Moreover, LAP is usually 
based on binary linkage assumption that models observed links as 
positive instances and unobserved links as negative instances. In-
stead, we use a weaker assumption that treats unobserved links as 
pseudo negative instances. Furthermore, most subjects or options 
may be quite heterogeneous due to the long-tail distribution, which 
is failed to capture by conventional LAP approaches. To address 
above challenges, we propose a Bayesian heteroskedastic choice 
model to represent the non-identically distributed linkages in the 
LAP problems. Finally, the empirical evaluation on real-world da-
tasets proves the superiority of our approach. 

Keywords—link analysis and prediction, heteroskedastic choice 
model, non-IID Bayesian analysis, parallel Gibbs sampling 

I. INTRODUCTION 
Choice Modeling (CM) has proven to be effective for policy, 

labor, health, marketing, economics and psychology research 
over the decades [1]. The goal of CM is to model the decision 
process of a subject’s choices among a set of options where the 
subjects refer to customers and options refer to products. As a 
result, CM can predict choices on the basis of the attributes of 
subjects and options. Link analysis and prediction (LAP) is a 
prominent topic in the data mining, for example, social network 
analysis studies linkages between people (on a unipartite graph) 
and collaborative filtering (CF) that studies linkages between us-
ers and their preferred items (on a bipartite graph).  

CM studies decision procession to generate links between 
subjects and options, while LAP can also be considered a puzzle 
of modeling the factors of entities that lead to the choices of link 
formation. Therefore, it is possible to bridge CM to deal with the 
LAP problems but we need to remove some barrier between 
them. the only available data are links but the attributes of 
entities are often unavailable in real world, e.g., user attributes 
are often inaccessible in recommender systems due to privacy. 
Motivated by the prevalence of latent variable models [2, 3], we 
extend CM to model the attributes of subjects and options in a 
latent feature space. Moreover, real-world links between 
subjects and options are usually long-tail [4] distributed because 
different subjects may have their specialized choices. However, 

most current LAP methods assume independent and identically 
distributed (IID) linkages which may fail to capture the 
heterogeneity of choices between subjects and options. Inspired 
by heteroskedastic choice model [1, 5], we model choices, i.e. 
links in LAP, with non-identically linkage assumption so as to 
overcome above deficiency. 

In this paper, we propose a latent variable based Bayesian 
heteroskedastic choice model (BHCM) where the term “latent 
variable” refers to three aspects: (1) latent features of subjects 
and options (2) latent groups of subjects and options (3) latent 
utility of each choice; and the term “heteroskedastic” points out 
the modeling of choices (linkages) under a non-IID assumption. 

II. HETEROGENEITY OF LINKAGES 
To get a deep insight into the motivation of BHCM, we first 

need to understand the nature of real-world data distribution, and 
the deficiency of current LAP methods under IID assumption. 

A. Long-tail Distributed Linkages in Real World 
It is known that most real-world data are often long-tail 

[4] distributed. In the LAP problem, we can often observe 
such a phenomenon: the minority of entities are associated 
with many links while the majority of entities are only 
associated with few links. From CM view, links correspond 
to choices and entities correspond to subjects and options. 
Formally, if a subject is associated with many choices, we define 
it as a core subject, else it is defined as a trivial subject. 
Similarly, if an option is chosen by many subjects, we define it 
as a core option, else it is defined as a trivial option. 

Latent feature based approaches have become dominant in 
LAP [2, 6]. As illustrated in Fig. 1 (a), probabilistic matrix fac-
torization (PMF) [7] is such a typical latent feature model which 
minimizes the negative log-joint-likelihood w.r.t. the normally 
distributed user feature vector �� and item vector ��: 

� = −�∑ 	
��
�������, ����� + ∑ 	
����(��)� + ∑ 	
��������� �  
where ��  �(��)  ~  ��� , ��  �(��)  ~  ���  and �� = {��, ��}          (1)  

where ��������, ��� acts as a loss function for fitting a rating ��� 
and ���(��)  serves as a Tikhonov regularizer λ‖�� − ��‖� 
where �� is often assumed zero mean [7]. From Eq. (1), we can 
find that the �� is heavily determined by core subjects because 
they account for the majority of data for estimates. The 
regularization term λ‖�� − ��‖�  shrinks ��  towards �� . If a 
trivial subject has similar preferences to core subjects, such 
shrinkage is reasonable. However, if a trivial subject has 
heterogeneous preferences, such shrinkage may be undesirable. 
Since a trivial subject accounts for few data, the shrinkage _______________________________________________________________________________ 
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caused by regularization may overwhelm the estimates of the �� 
by minimizing the loss (cf. Eq. (1)). It results in the failure to 
represent the heterogeneity of subjects. We address the above 
issue by estimating the ��  around a group mean �� where all 
members are homogeneous in this group. Hence, the latent 
features ��  of subjects are drawn from their group-specific 
distributions instead of a global distribution. In fact, the degrees 
of heterogeneity in different datasets may be quite different, it is 
hard to manually specify the number of groups. Hence, we can 
employ Bayesian nonparametric prior to determine the number 
of groups adaptively. Similarly, it learns the latent features �� 

B. Link Formation by Heteroskedastic Choice 
In LAP problems, the binary linkage is usually assumed, i.e. 

observed links as positive instances and unobserved links as 
negative instances. For example, recommender systems often 
treated purchased items as positive instances with unpurchased 
as negative ones [6]. We argue that such a binary linkage as-
sumption may turn out to be too strong, because unobserved 
links in many cases often are not truly negative instances, e.g., 
an author does not cite a paper because she is not aware of it 
rather than purposely omitting it. To address this issue, one may 
build LAP model under a weaker assumption that treats unob-
served links as pseudo-negative instances instead of true. We 
call it unary linkage assumption since only observed links are 
treated as true instances. 

Classic choice models were also built on binary linkages, i.e., 
choice/not-choice over each pair of subject and option so it 
needs to be revised to capacitate unary linkages. Intuitively, the 
true-positive choices can surely reflect the subjective decision 
whereas the decision on pseudo-negative choices is unsure, i.e., 
dislike or unawareness. Hence we model them via different pri-
ors [8]: informative priors, with small variances, are placed on 
true-positive choices while less informative priors, with larger 
variances, are placed on pseudo-negative choices. Intuitively, 
the choice made by a core subject is more informative than the 
choice made by a trivial subject, because the choice made by a 
core subject implies less randomness. Similarly, a choice made 
on a core option is less random than that made on a trivial option. 
Therefore, we place more informative priors on the choices as-
sociated with core subjects or options and less informative priors 
on the choices associated with trivial ones. The above analysis 
implies the non-IID nature of choices, i.e. linkages. Specially, 
we borrow the concept from heteroskedastic choice model [1, 5] 
to model the heteroskedastic errors over linkages.  

III. MODELS  
Discrete choice modeling often consists of two interrelated 

tasks: specification of the behavioral model and estimation of 
the parameters of that model [1]. Before presenting our BHCM, 
we first describe the preliminary about dichotomous choice.  

A. Preliminary 
In general, discrete choice models are often derived from 

random utility model (RUM) where the choice making is 
assumed to maximize utility [1]. On the basis of utility theory 
[9], let’s consider a latent variable !�� to model the utility of a 
choice by: !�� = "��# $ + %�� , where "��  is a feature vector 
consisting of the attributes of subject i and option j, $  is a 
parameter vector to quantify the utility of each attribute of "��, 
and %�� is the error term. Each observation &�� is related to the 
latent utility !�� associated with a threshold parameter ': 

&�� = *1 -. !�� > '
0 
/ℎ345-63 

That is, if the utility exceeds ', the subject i chooses the option 
j. Typically, ' is set zero for binary data. Then, the probability 
of such a dichotomous choice can be given by: 

P�&�� = 1�"��� = P�"��# $ + %�� > 0�  
= 1 − P�%�� ≤ −"��# $� = 1 − 89:�−"��# $�         (2)  

where 89:(∙) stands for some cumulative distribution function 
(CDF). For the binary case, a probit or logit function [10] is often 
chosen. In this paper, we choose the probit model, i.e., the CDF Φ(∙) of a normal distribution is used in Eq. (2), because it can 
provide a close-form inference for our model. Specially, we can 
write Eq. (2) as Φ�"��# $�  due to the symmetry of normal 
distribution, i.e. 1 − Φ�−"��# $� = Φ�"��# $�. 

The probit model assumes standard normally distributed error %��~�(0,1) . That is, homoscedastic errors with constant 
variance ���� = 1 are assumed over all choices. However, the 
parameter estimates will be biased and inconsistent if the errors 
are heteroskedastic [5]. Some researchers have proposed using 
a parametric model to avoid such biased estimation caused by 
the heteroskedasticity [11]. By modeling heteroskedastic error  
w.r.t. each choice, i.e. non-constant ���� , we can obtain Eq. (3) 
where ���  is often determined by some parametric function 
.����� [11] and ��� may be related to subject or option. Given 
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Fig. 1.  The graphical representations of four models, where all hyperparameters are omitted for concision. (a) PMF models IID latent features and homoscedastic 
error (b) BCM models group-specific distributed lantent features and homoscedastic error; (c) BHCM-B models group-specific distributed lantent features and 
heteroskedastic error; (d) BHCM-U is a special case of BHCM-B with symmetric latent features (for undirected unipartite graph).  
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- ∈ A  to index subjects and B ∈ C  to index options, the 
likelihood is given by Eq. (4). 

Φ�6�� ���⁄ � = P�%�� ���⁄ < "��# $ ���E �                    (3) 
�($|&) = ∏ Φ�6�� ���⁄ �&HI�1 − Φ�6�� ���⁄ ��JK&HI�∈A,�∈C   (4)  

B. Model Specifications 
Given the above dichotomous choice model, it is possible to 

learn the parameter $  by maximizing the likelihood (Eq. 4). 
However, explicit attributes "��  are not always in the LAP 
problems. This can be handled by latent variable models through 
modeling subjects and options using latent features [2, 12]. 
Here, we denote �� ∈ ℝ� as the latent feature vector of subject 
i and �� ∈ ℝ� as the latent feature vector of option j. Then, we 
can immediately obtain the latent utility: 

!�� = ��#�� + %�� where %��  �(0, ��)  ~  ���  

Moreover, in Section II, we argue that the latent features of 
each subject or option should be drawn from a group-specific 
distribution instead of a global one due to the heterogeneity. 
Therefore, we employ the Dirichlet Process (DP) [13] as a non-
parametric prior to determine the number of groups adaptively 
and generate parameters for the corresponding group-specific 
distributions. As illustrated in Fig. 1 (b), the model BCM ex-
tends the dichotomous choice model with DP so as to generate 
group-specific latent features for both subjects and options.  

BCM assumes the homoscedastic error over binary linkages. 
That is, the errors are IID standard normally distributed, i.e. %�� �(0,1)~ ��� , to model all choices. However, homoscedastic 
error assumption is improper due to the long tail phenomenon. 
To tackle with this issue, we can model such linkages based on 
heteroskedastic choices, i.e. the utility of each choice is non-IID:  

!�� = ��#�� + %�� where %��~��0, ���� � 

where ����  varies with each choice instead of a constant. 
Theoretically, the larger variance ����  means the more diffuse 
distribution, so it implies lower confidence level on making that 
choice. Therefore, we can model the error of positive choices 
with a small variance ����  whereas a larger variance ����  is used to 
model the error of pseudo-negative choices (unchosen data).  

As presented in Section II, the uncertainty of each choice is 
related to both the choice maker and the option itself. For 
example, a core subject is more certain to make the choices or 
not-choices while a trivial subject tends to make the choice with 
more uncertainty. Similarly, the certainty of choices on the core 
and trivial options are also different. Therefore, we need to 
represent a heteroskedastic error for each choice, namely %��~��0, ���� � , where the variance ����  is determined by both 
subject i and option j as depicted by the model BHCM-B in Fig. 
1 (c). Specially, we can place different priors on the variance 
parameters [8] w.r.t. true positive choices and pseudo-negative 
choices. More detail is discussed in the following subsection.  

Moreover, let’s consider the LAP on an undirected unipartite 
graph where subjects and options are in an identical set with the 
symmetric links, so we should also enforce the symmetry of la-
tent feature vectors. That is, the same latent feature vectors serve 
for both subject and options. Fig. 1 (d) shows such a symmetric 
model BHCM-U (applied to undirected unipartite graph), which 
is a variant of BHCM-B with symmetric features. 

C. Bayesian Specificaion and Intepretaion 
We can write down the generative process of the choices w.r.t. 

BHCM-B (BCM and BHCM-U are sub-models which can be 
generated similarly) in Table I where we introduce a set of 
binary variables N�� to indicate true-positive or pseudo-negative 
choice: 

N�� = *1 < -, B > is a true positive choice0 < -, B > is a pseduo negtive choice 

In Table I, OQR(S) stands for a stick-breaking process for 
DP [13]. ��J = |TU|  and ��V = |TW|  where TU  stands for the 
positive choices and TW denotes the negative choices made by 
subject -. XU and XW are similarly defined w.r.t. option B. 6(Y) is 
a function with the parameters Y. ZO([, \) is an inverse-gamma 
distribution [14]. Due to conjugacy of the normal-gamma [14], 
we can easily obtain the posteriors of ��J�  and ��V� : 

��J� |]TU, ��, � ~ ZO�[[ + ��J6(YJ)] 2⁄ , \ + ∑ %����∈TU 2⁄ �  
��V� | ]TW, ��, � ~ ZO�[[ + ��V6(YV)] 2⁄ , \ + ∑ %����∈TW 2⁄ �  (5)  

where %�� = !�� − ��#�� . The mode of ZO(S, b) is b/(S + 1), 
so if we set [ = −1 and \ = 0 in Eq. (5), then we can obtain a 
very simple form of the mode: 

TABLE I.  GENERATIVE PROCESS FOR BHCM-B 
1. Stick-breaking construction: 

j�|Sk ~ OQR(Sk)        jl|Sm ~ OQR(Sm) 
2. For each subject -: 

a. Sample a group assignment: z� ~ jk;  
b. Sample a latent feature vector: ��| z�, {qw}wxJy ~ �(q��) where qw = {�w, �w} 
c. Sample heteroskedastic variance parameters: 

i. Sample variance for positive choices: ��J�  ~ ZO([[ + ��J6(YJ) − ��J] 2⁄ , \ 2⁄ )  
ii. Sample variance for negative choices: ��V�  ~ ZO([[ + ��V6(YV) − ��V] 2⁄ , \ 2⁄ ) 

3. For each option B: 
a. Sample a group assignment: z� ~ jm;  
b. Sample a latent feature vector: �� |z�, {�w}wxJy ~ ������ where �w = ��̇w, �̇w� 
c. Sample heteroskedastic variance parameters: 

i. Sample variance for positive choices: ��J�  ~ ZO��[ + ��J6(YJ) − ��J� 2⁄ , \ 2⁄ �  
ii. Sample variance for negative choices: ��V�  ~ ZO��[ + ��V6(YV) − ��V� 2⁄ , \ 2⁄ � 

4. For each subject-option pair 〈-, B〉: 
a. Sample latent utility (�� is replaced by �� for 

BHCM-U, ���,J�  and ���,V�  are set to 1 for BCM) : 

!��~ �����#��, ���,J� �        N�� = 1
����#��, ���,V� �       N�� = 0  

where ���,J� = ���J� + ��J�  �/2, ���,V� = ���V� + ��V�  �/2 

b. Set link:  &�� = *1 -. !�� > 0
0 
/ℎ345-63 
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R(��J� ) = ���J� 6(bJ, �J, �J)⁄    R(��V� ) = ���V� 6(bV, �V, �V)⁄   (6) 

Each mode is a fraction where the numerator is the sample 
variance, i.e., ���J� = ∑ %����∈TU ��J⁄  and ���J� = ∑ %����∈TW ��V⁄ , and 
the denominator is a function 6(Y). Here we define 6(Y) as a 
generalized logistic function [15]: 

6(Y) = 6(b, �, �) = �K�
J������H���� + �                 (7)  

where b > 0 controls the rate varying with ��J. It is easy to see 
that Eq. (7) has the upper bound � when ��Jis large and has a 
minimum value (� + �) 2⁄  when ��J = 1. We can let 6(YJ) >6(YV) by a larger �J and a smaller �V so as to differentiate the 
scale of ���J�  and ���V� . As a result, the mode R(��J� ) tends to be 
small and R(��V� ) tends to be large, cf. Eq. (6). Since the values 
of ��J� , ��V�  are more probably drawn around the modes, the utility !�J of true-positive choices tend to associate with informative 
priors (i.e. a small ��J� ) while the utility !�V of pseudo-negative 
choices tend to associate with less informative priors (i.e. large ��J� ). That is, it places a more informative prior on a core subject 
i’s choices due to the larger ��J while less informative prior on 
a trivial subject’s choices. In the similar way, we can interpret 
priors on the variance parameters ��,J� , ��,V�  from the perspective 
of options so as to differentiate core options and trivial options. 

As a result, the subject-oriented utility !���  and the option-
oriented utility !���  of each choice (-, B)  are respectively 
distributed as follows: 

!��� ~ � ����#��, ��,J� �
����#��, ��,V� �       !��� ~ �����#��, ��,J� �

����#��, ��,V� �        
N�� = 1
N�� = 0 

Further, we can create a joint view of subject and option to 
measure the utility !��. Here, we use a convex combination of !���  and !���  by the parameter [ to represent the !��: 

!�� = [!��� + (1 − [)!���  

According to the property of normal random variables, if we set [ = 0.5, we can immediately obtain the distribution of utility !�� as Step 4 of the generative process in Table I.  

IV. LEARNING AND INFERENCE 
So far, we have presented the detail of BHCMs to model the 

heterogeneities for linkages. In order to conduct the prediction 
task, we first need to design an efficient algorithm to learn the 
model parameters. 

A. Model Parameter Learning 
In fact, exact inference is obviously intractable for BHCMs. 

However, its structure nicely lends itself to approximate 
inference via Markov Chain Monte Carlo (MCMC). Specially, 
we design a Gibbs sampler to draw samples in parallel for each 
step by taking advantage of the factorial conditional distribution 
over the parameters. In Algorithm I, we give a brief sampling 
scheme for BHCM-B (the sub-model BCM and BHCM-U can 
be sampled similarly). Here we omit the detail of each sampling 
step due to the limited space, which may refer to [10, 13, 14]. 

Theoretically, the speed of this algorithm is linear with the 
number of CPUs if not considering the overhead of data 
communication. That is, if we can sample the parameters w.r.t. 
each choice on a separate CPU in parallel, then sampling the 

parameters for all choices can be finished in approximately the 
same time as the case with one choice, since each step can be 
executed in parallel. 

B. Inference 
One of the main tasks of LAP is to infer the likelihood of new 

interactions between entities. From the CM view, it is equivalent 
to ranking the predictive choices in terms of their utility. Higher 
utility means higher probability that a subject will make that 
choice, i.e. generate a link. Given a subject - , the predictive 
distribution of the utility over option B is given by: 

P�!���&� ∝ � ��!�����#��, ���,V� ���(��)������������,V� � 

In the MCMC method, the predictive expectation of !�� can 
be retrieved through the Monte Carlo approximation from S 
samples. In practice, we use the expectation of !��(�) w.r.t. each 
sample to avoid unnecessary sampling noise. Therefore, we can 
estimate the utility !̂�� using by: 

!̂�� = ��!��� ≈ J
  ∑ � ¡��!��(�)���(�)#��(�), ���,V�(�)�¢ �xJ   

∝ ∑ ��(�)#��(�) �xJ                                  (9)  

Now, let ¤ denote the set of candidate options for subject -. 
Then, we can sort the utility {!̂�w}w∈¤ in a descending order to 
retrieve the rank over predictive choices 

V. RELATED WORK 
LAP problems are originally studied on a unipartite graph 

with one set of entities, e.g. people, webpages. As studied in this 
paper, probabilistic models are often designed to represent the 
presence or absence of links. Mixed membership stochastic 
block models (MMSB) [16] study the membership of each 
object using the relational between each pair of nodes, which 
have been applied to the LAP on social networks and protein 
interaction networks. Latent feature based matrix factorization 
(MF) [3, 7] methods are dominant in the CF area. In fact, most 
MF models, including the PMF model are built on real-value 
data, e.g. ratings, so they are not suitable to model the 
binary/unary linkages. Exceptionally, the maximum margin MF 
(MMMF) [17], which aim to learn latent features for the 
maximum large-margin prediction, can perform binary 
classification on linkage data on a bipartite graph, but it cannot 
be applied to LAP with the constraint of symmetric features, i.e. 
LAP on an undirected unipartite graph. Recently, some other 

ALOGRITHM I. PRALLEL GIBBS SAMPLING SCHEME FOR BHCM-B 
� Draw group assignment ¥�|Φ\¥� for each subject - using DP 
� Draw group assignment z�|Φ\¥� for each option B using DP 
� Draw latent features ��|Φ\�� for each subject - in parallel 
� Draw latent features ��|Φ\�� for each option B in parallel 
� Draw ��J� , ��V� |Φ\��J� , ��V�  for each subject - in parallel 
� Draw ��J� , ��V� |Φ\��J� , ��V�  for each option B in parallel 
� Draw utility !��|��, ��, ����  for each choice 〈-, B〉 in parallel 
� Draw qw|{��}�∈�(w) for each subject group § in parallel 
� Draw �w|�����∈¨(w) for each option group § in parallel 
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MF methods, such as the latent feature log-linear (LFL) model 
[12] and the supervised MF (SMF) [6] have been proposed to 
deal with LAP problems on both bipartite and unipartite graphs. 
However, all these LAP methods are implicitly designed under 
the IID assumption and do not consider the heterogeneity of 
linkages as focused on in this paper. 

To avoid modeling latent features for all users or item with a 
single distribution, DPMF [18] is proposed to model the latent 
features with group-specific distributions governed by Dirichlet 
process, which is similar to the BCM, but DPMF is mainly used 
to deal with real-value data, e.g. ratings, while BCM studies the 
utility to generate a link. Moreover, some approaches have been 
proposed to deal with the unary linkages. Weighted MF (WMF) 
[19, 20] extends traditional MF with weighted loss, where the 
loss on fitting positive instances are penalized with a large 
weight while the negative ones are penalized with a much 
smaller weight. Bayesian personalized ranking (BPR) learns the 
preference ordering over each pair of items [21]. In fact, such an 
idea can be viewed as paired preference analysis in the CM [22]. 

VI. EXPERIMENTS 
We conducted experiments on three real-world datasets to 

cover three representative LAP problems studied in this paper. 

A. Comparative Methods  
PMF, MMMF, LFL, SMF, MMSB and WMF are used as the 

state-of-the-art methods for comparison because they are appli-
cable to our testing problems and their code is publicly available. 
Specially, PMF models the links as a matrix with real-value rat-
ings, i.e. 1 for observed links and 0 otherwise. In the experi-
ments, we initialize the hyper parameters and the dimensionality 
of features for each model following the settings in the original 
papers, and then tune them by cross validation. 

B. Evaluation Metrics 
In following experiments we use three commonly accepted 

metrics for LAP evaluation: (1) area under the ROC curve 
(AUC); (2) Precision; and (3) Recall. 
� AUC measures the probability that the rank of positive in-

stances is higher than the rank of negative ones, where ©�/©K denotes positive/negative instances in the testing set 
and N(rk(i)<rk(k)) returns 1 if rk(i)<rk(k) and 0 otherwise: 

ª«8 = �∑ ∑ N�4§(-) < 4§(§)�w∈©��∈©¬ � [|©�| ∙ |©K|]⁄   

� Rec@K measures recall of the top ­ retrieved items. 
� Pr@K measures precision of the top ­ retrieved items. 

C. Social Relationship Prediction 
The NIPS coauthorship dataset has been used to evaluate 

quite a few LAP models [2, 6, 12]. Here, we randomly extracted 
512 authors who coauthored at least 3 publications with others. 
Then, we can obtain a 512×512 symmetric binary matrix where 
the entries with value 1 indicate observed coauthorships. We 
used the leave-one-out strategy to construct the testing dataset, 
that is, we randomly hold out one observed coauthorship as the 
positive instance and nine authors without observed coauthor-
ships as the negative instances for each author. 

The Epinions dataset is provided by the consumer review site 
Epinions.com where members of the site can decide whether to 
“trust” each other. Hence, we can construct a directed who-

trusts-whom network. In this experiment, we randomly ex-
tracted 1082 users to construct a directed graph represented by a 
1082×1082 asymmetric binary matrix. For the testing dataset, 
we adopted the similar leave-five-out strategy (5 positive in-
stances combining with 45 negative instances are held out) over 
the users who trust at least 10 other users, i.e., the testing users 
originally have at least 10 outlinks. 

For the NIPS dataset, we adopted BHCM-U to model the 
latent features of authors due to the coauthorships being an 
undirected unipartite graph over authors. For the Epinions da-
taset, we adopted BHCM-B to respectively model the latent 
features of trusters and trustees since trust relation is directed. 
Moreover, we set {�J=4, �J=0, �V=1, �V=0.8} for the general-
ized logistic function of Eq. (7), which was tested to produce 
good results. 

TABLE II.  THE AUC OF COMPARATIVE METHODS 
Model NIPS Epinions 

PMF NA 0.7769±0.157 
MMMF NA 0.7682±0.148 
LFL 0.6203±0.269 0.6250±0.169 
SMF 0.6379±0.253 0.6529±0.165 
MMSB 0.6651±0.237 0.7335±0.160 
BCM 0.7089±0.205 0.8043±0.136 
BHCM 0.7355±0.183 0.8196±0.129 

The average AUCs and standard deviations are reported in 
Table II. Thanks to heteroskedastic CM technique, BHCM 
produces a significant improvement over other comparative 
methods. The reason is that people always have different 
backgrounds and interests, which results in long-tail distributed 
choices; however, all the baseline methods adopt the IID 
assumptions to model both latent features and linkages, which 
fail to capture the heterogeneity among subjects and options. In 
comparison, BHCM models the latent features by group-specific 
distributions and the linkages by heteroskedastic distributions so 
it is more capable of capturing the underlying heterogeneity. 
Specially, it can be found that BHCM outperforms BCM, which 
reveals the fact that the unobserved links do not always mean 
true negative instances in the real-world scenarios. Hence, the 
unary-linkage assumption adopted by BHCM is more suitable 
for these datasets than the binary-linkages adapted by other 
methods. Furthermore, we can find that the standard deviation 
of BHCM is the smallest among all comparative models, which 
illustrates that BHCM can provide much better representation to 
capture the heterogeneity. So far, all these reasons result in 
BHCM having the best performance. 

Fig. 2 reports the AUC values over the users grouped by 
different numbers of observed links on the Epinions dataset. We 
find that BHCM considerably outperforms other models even 
when users have few observed links. This result again proves the 
advantage of our non-IID LAP model with the unary-linkage 
assumption. The major reason is that most users are trivial users 
with relatively few observed links (as illustrated on the left of 
Fig. 2), the model parameters tend to be learned from the 
remainder of negative links under the binary-linkage assumption 
used by other IID LAP models. Moreover, some models may 
lead to over-regularization when learning the latent features for 
those trivial users with few data (see the analysis in Section II). 
In comparison, BHCM naturally overcomes these limitations 
with the non-IID linkage assumption, achieving better and more 
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stable performance than other comparative methods no matter 
how many observed links are associated with users. 

  
Fig. 2. Top: The long-tail linkage distribution of Epinions training set. 
Bottom: The results of AUC over users grouped by different numbers of trusters 
(links) for all comparative methods. 

D. Item Recommendation 
In a social networking site, it is only known what items users 

are interested in but there is often no data available to record 
what users dislike. Therefore, it is a typical unary-linkage based 
CF problem. In this experiment, we use the SNS data provided 
by KDD Cup 20121 where the items include users, groups, 
games, etc. We randomly sampled 2000 users and 1000 items, 
so we obtained a 2000×1000 matrix containing ones to indicate 
observed links. Then, we held out 20% of the observed links for 
each user as the ground truth for testing. 

TABLE III.  PR@5,10 AND REC@5,10 OF COMPARATIVE METHODS 
Model Pr@5 Pr@10 Rec@5 Rec@10 

PMF 0.2074 0.1805 0.1669 0.2926 
MMMF 0.2356 0.1987 0.1959 0.3051 
LFL 0.1973 0.1760 0.1458 0.2723 
WMF 0.2350 0.2075 0.2115 0.3272 
BCM 0.2437 0.2187 0.2450 0.3488 
BHCM 0.2659 0.2334 0.2412 0.3577 

In this CF problem, the methods PMF, MMMF, LFL and 
BCM are built on binary-linkage assumption, i.e., the unchosen 
items are treated as true negative instances, whereas BHCM and 
WMF are constructed under unary-linkage assumption. In this 
experiment, we set {bJ®=bV®=0.1, bJ̄ =bV̄ =0.2} for BHCM, and 
other parameters are set the same as previous experiments. As 
reported in Table III, BHCM achieves much better precision and 
recall than other binary-linkage assumption based LAP models. 
Specially, WMF outperforms PMF, because WMF models the 
linkages as a one-class CF problem, i.e. under the unary-linkage 
assumption. However, WMF underperforms BHCM, which 
may be attributed to three weak points: (1) WMF is a real-value 
based model; (2) The latent features of WMF are IID assumed; 
(3) WMF cannot adaptively find optimal weight parameters. 
Obviously, BHCM effectively addresses these weak points. 

VII. CONCLUSION 
In this paper, we present the model BHCM, which draws on 

the experience of choice modeling to deal with LAP problems. 
The core idea of BHCM is to model heterogeneity of linkages 
for LAP under a non-IID assumption. With such specifications, 
BHCM can elegantly model the heteroskedastic unary linkages 
which are ubiquitous in real world. The final experimental 
results manifest the sophistication of our models against other 
comparative state-of-the-art methods for different applications. 
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