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Abstract—Choice modeling (CM) aims to describe and predict
choices according to attributes of subjects and options. If we pre-
sume each choice making as the formation of link between subjects
and options, immediately CM can be bridged to link analysis and
prediction (LAP) problem. However, such a mapping is often not
trivial and straightforward. In LAP problems, the only available
observations are links among objects but their attributes are often
inaccessible. Therefore, we extend CM into a latent feature space
to avoid the need of explicit attributes. Moreover, LAP is usually
based on binary linkage assumption that models observed links as
positive instances and unobserved links as negative instances. In-
stead, we use a weaker assumption that treats unobserved links as
pseudo negative instances. Furthermore, most subjects or options
may be quite heterogeneous due to the long-tail distribution, which
is failed to capture by conventional LAP approaches. To address
above challenges, we propose a Bayesian heteroskedastic choice
model to represent the non-identically distributed linkages in the
LAP problems. Finally, the empirical evaluation on real-world da-
tasets proves the superiority of our approach.

Keywords—link analysis and prediction, heteroskedastic choice
model, non-I1ID Bayesian analysis, parallel Gibbs sampling

I. INTRODUCTION

Choice Modeling (CM) has proven to be effective for policy,
labor, health, marketing, economics and psychology research
over the decades [1]. The goal of CM is to model the decision
process of a subject’s choices among a set of options where the
subjects refer to customers and options refer to products. As a
result, CM can predict choices on the basis of the attributes of
subjects and options. Link analysis and prediction (LAP) is a
prominent topic in the data mining, for example, social network
analysis studies linkages between people (on a unipartite graph)
and collaborative filtering (CF) that studies linkages between us-
ers and their preferred items (on a bipartite graph).

CM studies decision procession to generate links between
subjects and options, while LAP can also be considered a puzzle
of modeling the factors of entities that lead to the choices of link
formation. Therefore, it is possible to bridge CM to deal with the
LAP problems but we need to remove some barrier between
them. the only available data are links but the attributes of
entities are often unavailable in real world, e.g., user attributes
are often inaccessible in recommender systems due to privacy.
Motivated by the prevalence of latent variable models [2, 3], we
extend CM to model the attributes of subjects and options in a
latent feature space. Moreover, real-world links between
subjects and options are usually long-tail [4] distributed because
different subjects may have their specialized choices. However,
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most current LAP methods assume independent and identically
distributed (IID) linkages which may fail to capture the
heterogeneity of choices between subjects and options. Inspired
by heteroskedastic choice model [1, 5], we model choices, i.e.
links in LAP, with non-identically linkage assumption so as to
overcome above deficiency.

In this paper, we propose a latent variable based Bayesian
heteroskedastic choice model (BHCM) where the term “latent
variable” refers to three aspects: (1) latent features of subjects
and options (2) latent groups of subjects and options (3) /atent
utility of each choice; and the term “heteroskedastic” points out
the modeling of choices (linkages) under a non-IID assumption.

II. HETEROGENEITY OF LINKAGES

To get a deep insight into the motivation of BHCM, we first
need to understand the nature of real-world data distribution, and
the deficiency of current LAP methods under IID assumption.

A. Long-tail Distributed Linkages in Real World

It is known that most real-world data are often long-tail
[4] distributed. In the LAP problem, we can often observe
such a phenomenon: the minority of entities are associated
with many links while the majority of entities are only
associated with few links. From CM view, links correspond
to choices and entities correspond to subjects and options.
Formally, if a subject is associated with many choices, we define
it as a core subject, clse it is defined as a trivial subject.
Similarly, if an option is chosen by many subjects, we define it
as a core option, else it is defined as a trivial option.

Latent feature based approaches have become dominant in
LAP [2, 6]. As illustrated in Fig. 1 (a), probabilistic matrix fac-
torization (PMF) [7] is such a typical latent feature model which
minimizes the negative log-joint-likelihood w.r.t. the normally
distributed user feature vector U; and item vector V;:

L= _[ZLJ lOgPO-(YL]|Ul,V]) + Zi lOngU(Ui) + 2] lOngV(V])]
where U; i@ N(0y),V; 4 N(8y) and 8y = {py, 0,.} (D

where P(Yi j | U, Vj) acts as a loss function for fitting a rating Y;;
and P, (U;) serves as a Tikhonov regularizer A||U; — pyl|?
where py is often assumed zero mean [7]. From Eq. (1), we can
find that the py is heavily determined by core subjects because
they account for the majority of data for estimates. The
regularization term A||U; — pyl|? shrinks U; towards py. If a
trivial subject has similar preferences to core subjects, such
shrinkage is reasonable. However, if a trivial subject has
heterogeneous preferences, such shrinkage may be undesirable.
Since a trivial subject accounts for few data, the shrinkage
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Fig. 1. The graphical representations of four models, where all hyperparameters are omitted for concision. (a) PMF models IID latent features and homoscedastic
error (b) BCM models group-specific distributed lantent features and homoscedastic error; (c) BHCM-B models group-specific distributed lantent features and
heteroskedastic error; (d) BHCM-U is a special case of BHCM-B with symmetric latent features (for undirected unipartite graph).

caused by regularization may overwhelm the estimates of the U;
by minimizing the loss (cf. Eq. (1)). It results in the failure to
represent the heterogeneity of subjects. We address the above
issue by estimating the U; around a group mean pr, where all
members are homogeneous in this group. Hence, the latent
features U; of subjects are drawn from their group-specific
distributions instead of a global distribution. In fact, the degrees
of heterogeneity in different datasets may be quite different, it is
hard to manually specify the number of groups. Hence, we can
employ Bayesian nonparametric prior to determine the number
of groups adaptively. Similarly, it learns the latent features V;

B. Link Formation by Heteroskedastic Choice

In LAP problems, the binary linkage is usually assumed, i.e.
observed links as positive instances and unobserved links as
negative instances. For example, recommender systems often
treated purchased items as positive instances with unpurchased
as negative ones [6]. We argue that such a binary linkage as-
sumption may turn out to be too strong, because unobserved
links in many cases often are not truly negative instances, e.g.,
an author does not cite a paper because she is not aware of it
rather than purposely omitting it. To address this issue, one may
build LAP model under a weaker assumption that treats unob-
served links as pseudo-negative instances instead of true. We
call it unary linkage assumption since only observed links are
treated as true instances.

Classic choice models were also built on binary linkages, i.e.,
choice/not-choice over each pair of subject and option so it
needs to be revised to capacitate unary linkages. Intuitively, the
true-positive choices can surely reflect the subjective decision
whereas the decision on pseudo-negative choices is unsure, i.e.,
dislike or unawareness. Hence we model them via different pri-
ors [8]: informative priors, with small variances, are placed on
true-positive choices while less informative priors, with larger
variances, are placed on pseudo-negative choices. Intuitively,
the choice made by a core subject is more informative than the
choice made by a trivial subject, because the choice made by a
core subject implies less randomness. Similarly, a choice made
on a core option is less random than that made on a trivial option.
Therefore, we place more informative priors on the choices as-
sociated with core subjects or options and less informative priors
on the choices associated with trivial ones. The above analysis
implies the non-IID nature of choices, i.e. linkages. Specially,
we borrow the concept from heteroskedastic choice model [1, 5]
to model the heteroskedastic errors over linkages.
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III. MODELS

Discrete choice modeling often consists of two interrelated
tasks: specification of the behavioral model and estimation of
the parameters of that model [1]. Before presenting our BHCM,
we first describe the preliminary about dichotomous choice.

A. Preliminary

In general, discrete choice models are often derived from
random utility model (RUM) where the choice making is
assumed to maximize utility [1]. On the basis of utility theory
[9], let’s consider a latent variable 7;; to model the utility of a
choice by: n;; = xl-TjB + &, where x;; is a feature vector
consisting of the attributes of subject i and option j, f§ is a
parameter vector to quantify the utility of each attribute of x;;,
and g;; is the error term. Each observation Y;; is related to the
latent utility n;; associated with a threshold parameter 7:

0 otherwise

ij=
That is, if the utility exceeds 7, the subject i chooses the option
J. Typically, T is set zero for binary data. Then, the probability
of such a dichotomous choice can be given by:

P(YL = 1|x”) = P(XEB + Sij > 0)

= 1-P(s; < —x}B) = 1- CDF(~%}) (2
where CDF (+) stands for some cumulative distribution function
(CDF). For the binary case, a probit or logit function [10] is often
chosen. In this paper, we choose the probit model, i.e., the CDF
@ () of a normal distribution is used in Eq. (2), because it can
provide a close-form inference for our model. Specially, we can
write Eq. (2) as CID(xl-TjB) due to the symmetry of normal
distribution, i.e. 1 — CD(—x?}-ﬁ) = Cb(xiTjﬁ).

The probit model assumes standard normally distributed error
£;~N(0,1) . That is, homoscedastic errors with constant
variance oizj = 1 are assumed over all choices. However, the
parameter estimates will be biased and inconsistent if the errors
are heteroskedastic [5]. Some researchers have proposed using
a parametric model to avoid such biased estimation caused by
the heteroskedasticity [11]. By modeling heteroskedastic error
w.r.t. each choice, i.e. non-constant 05-, we can obtain Eq. (3)
where g;; is often determined by some parametric function
f (Gi j) [11] and 8;; may be related to subject or option. Given



i €7 to index subjects and j € J to index options, the
likelihood is given by Eq. (4).

(ID(SU/JL-]-) = P(S’-]/O-lyf < x?}ﬁ/()}]) v (3)
LBIY) = Tliesjeg ®(sij/03;) 7|1 — ®(si;/0:;)] 7 (4)
B. Model Specifications

Given the above dichotomous choice model, it is possible to
learn the parameter B by maximizing the likelihood (Eq. 4).
However, explicit attributes x;; are not always in the LAP
problems. This can be handled by latent variable models through
modeling subjects and options using latent features [2, 12].
Here, we denote U; € R? as the latent feature vector of subject
iandV; € R¢ as the latent feature vector of option j. Then, we
can immediately obtain the latent utility:

nij = UTV] + Eij where Eij iid N(0,0'z)

Moreover, in Section II, we argue that the latent features of
each subject or option should be drawn from a group-specific
distribution instead of a global one due to the heterogeneity.
Therefore, we employ the Dirichlet Process (DP) [13] as a non-
parametric prior to determine the number of groups adaptively
and generate parameters for the corresponding group-specific
distributions. As illustrated in Fig. 1 (b), the model BCM ex-
tends the dichotomous choice model with DP so as to generate
group-specific latent features for both subjects and options.

BCM assumes the homoscedastic error over binary linkages.
That is, the errors are IID standard normally distributed, i.e.
sij”iiN (0,1), to model all choices. However, homoscedastic
error assumption is improper due to the long tail phenomenon.
To tackle with this issue, we can model such linkages based on
heteroskedastic choices, i.e. the utility of each choice is non-IID:

ni; = UTV; + & where &,;~N(0,07)

where ¢ varies with each choice instead of a constant.

ij
Theoretically, the larger variance al-zj means the more diffuse

distribution, so it implies lower confidence level on making that
choice. Therefore, we can model the error of positive choices
with a small variance aizj whereas a larger variance 0-2]- is used to
model the error of pseudo-negative choices (unchosen data).

As presented in Section II, the uncertainty of each choice is
related to both the choice maker and the option itself. For
example, a core subject is more certain to make the choices or
not-choices while a trivial subject tends to make the choice with
more uncertainty. Similarly, the certainty of choices on the core
and trivial options are also different. Therefore, we need to
represent a heteroskedastic error for each choice, namely
&;;~N(0,0%), where the variance ¢ is determined by both
subject i and option j as depicted by the model BHCM-B in Fig.
1 (c). Specially, we can place different priors on the variance
parameters [8] w.r.t. true positive choices and pseudo-negative
choices. More detail is discussed in the following subsection.

Moreover, let’s consider the LAP on an undirected unipartite
graph where subjects and options are in an identical set with the
symmetric links, so we should also enforce the symmetry of la-
tent feature vectors. That is, the same latent feature vectors serve
for both subject and options. Fig. 1 (d) shows such a symmetric
model BHCM-U (applied to undirected unipartite graph), which
is a variant of BHCM-B with symmetric features.
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TABLE I. GENERATIVE PROCESS FOR BHCM-B
1. Stick-breaking construction:
T, |a, ~ GEM(a,)

m,|a, ~ GEM(a,)

2. For each subject i:
a. Sample a group assignment: z; ~ Tr,,;
b. Sample a latent feature vector:
Uil zi, {Ok}i=1~ N(8,) where 6 = {py, Ay}
c. Sample heteroskedastic variance parameters:
i.Sample variance for positive choices:
of ~1G([a + Nyys(®;) — Ny1/2,b/2)
ii.Sample variance for negative choices:
ol ~1G([a + Nips(®,) — Nyyl/2,b/2)
3. For each option j:
a. Sample a group assignment: z; ~ 7T,;
b. Sample a latent feature vector:
V; |z, {0} 5e1~ N(9,;) where 9, = {fi;, Ay}
c. Sample heteroskedastic variance parameters:
i. Sample variance for positive choices:
ofi ~1G([a + Njys(@,) — Nj1|/2,b/2)
ii. Sample variance for negative choices:
o/ ~1G([a + Njos(Py) — Njo|/2,b/2)
4. For each subject-option pair (i, j):

a. Sample latent utility (V; is replaced by U; for
BHCM-U, O'L-z]-_l and G,-Zj‘o are set to 1 for BCM) :
”~{N(Ul-TV]-, of,) 6 =1
i NV, 67,)  6;=0
where 0, = (ck + o )/2, 0l = (o + o )/2
1 ifn;>0

b. Setlink: Y;; = {0 otherwise

C. Bayesian Specificaion and Intepretaion

We can write down the generative process of the choices w.r.t.
BHCM-B (BCM and BHCM-U are sub-models which can be
generated similarly) in Table I where we introduce a set of
binary variables §;; to indicate true-positive or pseudo-negative
choice:

5= {1 < i,j > is a true positive choice
7|0 <i,j> isapseduo negtive choice

In Table I, GEM (a) stands for a stick-breaking process for
DP [13].N;; = |i1]| and N;, = |i0| where i1 stands for the
positive choices and i0 denotes the negative choices made by
subject i. j1 and jO are similarly defined w.r.t. option j. s(®) is
a function with the parameters @. IG (a, b) is an inverse-gamma
distribution [14]. Due to conjugacy of the normal-gamma [14],
we can easily obtain the posteriors of 3 and ¢:

i1, Uy, V ~ IG([a + Nys(@1)1/2,b + X jenn £7/2)
o5 Mi0, Uy, V ~ 1G([a + Nips()1/2,b + Xjein €%/2) (5)
where g;; = 1;; — U;er. The mode of IG(a, B) is B/(a + 1),

soifwe seta = —1 and b = 0 in Eq. (5), then we can obtain a
very simple form of the mode:



M (o) = i /s(Br, w1, v1) M(0%) = Gjy/5(Bo, wo,¥0) (6)
Each mode is a fraction where the numerator is the sample
variance, i.e., 33 = Xjei1 €7/ Ny and 673 = X jeio €71/ Ny, and
the denominator is a function s(®). Here we define s(®) as a
generalized logistic function [15]:
s(@) =s(B,w,y) =

ey
1+e-B(Ni1~1) ty

@)
where f > 0 controls the rate varying with N;;. It is easy to see
that Eq. (7) has the upper bound w when Ny, is large and has a
minimum value (w + y)/2 when N;; = 1. We can let s(d;) >
s(@,) by a larger w, and a smaller w, so as to differentiate the
scale of 35 and G74. As a result, the mode M(c5) tends to be
small and M (63) tends to be large, cf. Eq. (6). Since the values
of 62, 67 are more probably drawn around the modes, the utility
7,1 of true-positive choices tend to associate with informative
priors (i.e. a small 63) while the utility 77;o of pseudo-negative
choices tend to associate with less informative priors (i.e. large
02). That is, it places a more informative prior on a core subject
i’s choices due to the larger N;; while less informative prior on
a trivial subject’s choices. In the similar way, we can interpret
priors on the variance parameters o7, aj?o from the perspective
of options so as to differentiate core options and trivial options.

As a result, the subject-oriented utility n;; and the option-
oriented utility n{; of each choice (i,j) are respectively
distributed as follows:

{N(UiTVj"Ti?l) {N(UiTVj"fj?l)
N(UTV,0) T IN(UTY;, o)

Further, we can create a joint view of subject and option to
measure the utility 7;;. Here, we use a convex combination of
n;; and n7; by the parameter a to represent the 7;;:

s
ij

niy = ani; + (1 —a)nj;

According to the property of normal random variables, if we set
a = 0.5, we can immediately obtain the distribution of utility
7;; as Step 4 of the generative process in Table L.

IV. LEARNING AND INFERENCE

So far, we have presented the detail of BHCMs to model the
heterogeneities for linkages. In order to conduct the prediction
task, we first need to design an efficient algorithm to learn the
model parameters.

A. Model Parameter Learning

In fact, exact inference is obviously intractable for BHCMs.
However, its structure nicely lends itself to approximate
inference via Markov Chain Monte Carlo (MCMC). Specially,
we design a Gibbs sampler to draw samples in parallel for each
step by taking advantage of the factorial conditional distribution
over the parameters. In Algorithm I, we give a brief sampling
scheme for BHCM-B (the sub-model BCM and BHCM-U can
be sampled similarly). Here we omit the detail of each sampling
step due to the limited space, which may refer to [10, 13, 14].

Theoretically, the speed of this algorithm is linear with the
number of CPUs if not considering the overhead of data
communication. That is, if we can sample the parameters w.r.t.
each choice on a separate CPU in parallel, then sampling the
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ALOGRITHM I. PRALLEL GIBBS SAMPLING SCHEME FOR BHCM-B
e Draw group assignment z;|®\ z; for each subject i using DP
e Draw group assignment z;|®\z; for each option j using DP

e Draw latent features U;|®\U; for each subject i in parallel
o Draw latent features V;|®\V; for each option j in parallel

e Draw o4, 05| ®\o3, o3 for each subject i in parallel

* Draw 03, 05| ®\0};, g5 for each option j in parallel

e Draw utility n;;|U;, V;, aizj for each choice (i, j) in parallel
® Draw 6 |{U;};es(x) for each subject group k in parallel

e Draw U, |{Vj for each option group k in parallel

}jEO(k)

parameters for all choices can be finished in approximately the
same time as the case with one choice, since each step can be
executed in parallel.

B. Inference

One of the main tasks of LAP is to infer the likelihood of new
interactions between entities. From the CM view, it is equivalent
to ranking the predictive choices in terms of their utility. Higher
utility means higher probability that a subject will make that
choice, i.e. generate a link. Given a subject i, the predictive
distribution of the utility over option j is given by:

P(n;,]Y) « f N(n;;|UTV;, 03,0)dP(U)AP(V;)dP (a7 ,)

In the MCMC method, the predictive expectation of 7;; can
be retrieved through the Monte Carlo approximation from §

samples. In practice, we use the expectation of US) w.r.t. each
sample to avoid unnecessary sampling noise. Therefore, we can

estimate the utility 7};; using by:
©)

Now, let ¢ denote the set of candidate options for subject i.
Then, we can sort the utility {f; };ec in a descending order to
retrieve the rank over predictive choices

N 1 Ty () 2(s)
Nij = [E(Tlij) &3 =1 E (N(nij |Ui V7,030
32 U

V. RELATED WORK

LAP problems are originally studied on a unipartite graph
with one set of entities, e.g. people, webpages. As studied in this
paper, probabilistic models are often designed to represent the
presence or absence of links. Mixed membership stochastic
block models (MMSB) [16] study the membership of each
object using the relational between each pair of nodes, which
have been applied to the LAP on social networks and protein
interaction networks. Latent feature based matrix factorization
(MF) [3, 7] methods are dominant in the CF area. In fact, most
MF models, including the PMF model are built on real-value
data, e.g. ratings, so they are not suitable to model the
binary/unary linkages. Exceptionally, the maximum margin MF
(MMMF) [17], which aim to learn latent features for the
maximum large-margin prediction, can perform binary
classification on linkage data on a bipartite graph, but it cannot
be applied to LAP with the constraint of symmetric features, i.e.
LAP on an undirected unipartite graph. Recently, some other



MF methods, such as the latent feature log-linear (LFL) model
[12] and the supervised MF (SMF) [6] have been proposed to
deal with LAP problems on both bipartite and unipartite graphs.
However, all these LAP methods are implicitly designed under
the 11D assumption and do not consider the heterogeneity of
linkages as focused on in this paper.

To avoid modeling latent features for all users or item with a
single distribution, DPMF [18] is proposed to model the latent
features with group-specific distributions governed by Dirichlet
process, which is similar to the BCM, but DPMF is mainly used
to deal with real-value data, e.g. ratings, while BCM studies the
utility to generate a link. Moreover, some approaches have been
proposed to deal with the unary linkages. Weighted MF (WMF)
[19, 20] extends traditional MF with weighted loss, where the
loss on fitting positive instances are penalized with a large
weight while the negative ones are penalized with a much
smaller weight. Bayesian personalized ranking (BPR) learns the
preference ordering over each pair of items [21]. In fact, such an
idea can be viewed as paired preference analysis in the CM [22].

VI. EXPERIMENTS

We conducted experiments on three real-world datasets to
cover three representative LAP problems studied in this paper.

A. Comparative Methods

PMF, MMMF, LFL, SMF, MMSB and WMF are used as the
state-of-the-art methods for comparison because they are appli-
cable to our testing problems and their code is publicly available.
Specially, PMF models the links as a matrix with real-value rat-
ings, i.e. 1 for observed links and 0 otherwise. In the experi-
ments, we initialize the hyper parameters and the dimensionality
of features for each model following the settings in the original
papers, and then tune them by cross validation.

B. Evaluation Metrics

In following experiments we use three commonly accepted
metrics for LAP evaluation: (1) area under the ROC curve
(AUCQ); (2) Precision; and (3) Recall.

e AUC measures the probability that the rank of positive in-
stances is higher than the rank of negative ones, where
C*/C™ denotes positive/negative instances in the testing set
and 6 (rk(i)<rk(k)) returns 1 if rk(i)<rk(k) and 0 otherwise:

AUC = [Tiec+ Tec- 8(rk(d) < rk(0)]/1IC*] - 1€71]

Rec@K measures recall of the top K retrieved items.
Pr@K measures precision of the top K retrieved items.

C. Social Relationship Prediction

The NIPS coauthorship dataset has been used to evaluate
quite a few LAP models [2, 6, 12]. Here, we randomly extracted
512 authors who coauthored at least 3 publications with others.
Then, we can obtain a 512X512 symmetric binary matrix where
the entries with value 1 indicate observed coauthorships. We
used the leave-one-out strategy to construct the testing dataset,
that is, we randomly hold out one observed coauthorship as the
positive instance and nine authors without observed coauthor-
ships as the negative instances for each author.

The Epinions dataset is provided by the consumer review site
Epinions.com where members of the site can decide whether to
“trust” each other. Hence, we can construct a directed who-
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trusts-whom network. In this experiment, we randomly ex-
tracted 1082 users to construct a directed graph represented by a
1082x 1082 asymmetric binary matrix. For the testing dataset,
we adopted the similar leave-five-out strategy (5 positive in-
stances combining with 45 negative instances are held out) over
the users who trust at least 10 other users, i.e., the testing users
originally have at least 10 outlinks.

For the NIPS dataset, we adopted BHCM-U to model the
latent features of authors due to the coauthorships being an
undirected unipartite graph over authors. For the Epinions da-
taset, we adopted BHCM-B to respectively model the latent
features of trusters and trustees since trust relation is directed.
Moreover, we set {w,=4, ¥1=0, wy=1, y,=0.8} for the general-
ized logistic function of Eq. (7), which was tested to produce
good results.

TABLE II. THE AUC OF COMPARATIVE METHODS

Model NIPS Epinions
PMF NA 0.7769+0.157
MMMF NA 0.7682+0.148
LFL 0.6203+0.269 0.6250+0.169
SMF 0.6379+0.253 0.6529+0.165
MMSB 0.6651+0.237 0.7335+0.160
BCM 0.7089+0.205 0.8043+0.136
BHCM 0.7355+0.183 0.8196+0.129

The average AUCs and standard deviations are reported in
Table II. Thanks to heteroskedastic CM technique, BHCM
produces a significant improvement over other comparative
methods. The reason is that people always have different
backgrounds and interests, which results in long-tail distributed
choices; however, all the baseline methods adopt the IID
assumptions to model both latent features and linkages, which
fail to capture the heterogeneity among subjects and options. In
comparison, BHCM models the latent features by group-specific
distributions and the linkages by heteroskedastic distributions so
it is more capable of capturing the underlying heterogeneity.
Specially, it can be found that BHCM outperforms BCM, which
reveals the fact that the unobserved links do not always mean
true negative instances in the real-world scenarios. Hence, the
unary-linkage assumption adopted by BHCM is more suitable
for these datasets than the binary-linkages adapted by other
methods. Furthermore, we can find that the standard deviation
of BHCM is the smallest among all comparative models, which
illustrates that BHCM can provide much better representation to
capture the heterogeneity. So far, all these reasons result in
BHCM having the best performance.

Fig. 2 reports the AUC values over the users grouped by
different numbers of observed links on the Epinions dataset. We
find that BHCM considerably outperforms other models even
when users have few observed links. This result again proves the
advantage of our non-IID LAP model with the unary-linkage
assumption. The major reason is that most users are trivial users
with relatively few observed links (as illustrated on the left of
Fig. 2), the model parameters tend to be learned from the
remainder of negative links under the binary-linkage assumption
used by other IID LAP models. Moreover, some models may
lead to over-regularization when learning the latent features for
those trivial users with few data (see the analysis in Section II).
In comparison, BHCM naturally overcomes these limitations
with the non-1ID linkage assumption, achieving better and more



stable performance than other comparative methods no matter
how many observed links are associated with users.
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Fig.2. Top: The long-tail linkage distribution of Epinions training set.
Bottom: The results of AUC over users grouped by different numbers of trusters
(links) for all comparative methods.

D. Item Recommendation

In a social networking site, it is only known what items users
are interested in but there is often no data available to record
what users dislike. Therefore, it is a typical unary-linkage based
CF problem. In this experiment, we use the SNS data provided
by KDD Cup 2012' where the items include users, groups,
games, etc. We randomly sampled 2000 users and 1000 items,
so we obtained a 2000x 1000 matrix containing ones to indicate
observed links. Then, we held out 20% of the observed links for
each user as the ground truth for testing.

TABLE III. PR@S5,10 AND REC@5,10 OF COMPARATIVE METHODS
Model Pr@5 Pr@10 Rec@5 Rec@10
PMF 0.2074 0.1805 0.1669 0.2926
MMMF 0.2356 0.1987 0.1959 0.3051
LFL 0.1973 0.1760 0.1458 0.2723
WMF 0.2350 0.2075 0.2115 0.3272
BCM 0.2437 0.2187 0.2450 0.3488
BHCM 0.2659 0.2334 0.2412 0.3577

In this CF problem, the methods PMF, MMMF, LFL and
BCM are built on binary-linkage assumption, i.e., the unchosen
items are treated as true negative instances, whereas BHCM and
WMF are constructed under unary-linkage assumption. In this
experiment, we set {5 =BY=0.1, B/ =p¥=0.2} for BHCM, and
other parameters are set the same as previous experiments. As
reported in Table III, BHCM achieves much better precision and
recall than other binary-linkage assumption based LAP models.
Specially, WMF outperforms PMF, because WMF models the
linkages as a one-class CF problem, i.e. under the unary-linkage
assumption. However, WMF underperforms BHCM, which
may be attributed to three weak points: (1) WMF is a real-value
based model; (2) The latent features of WMF are 11D assumed,
(3) WMF cannot adaptively find optimal weight parameters.
Obviously, BHCM effectively addresses these weak points.

VII. CONCLUSION

In this paper, we present the model BHCM, which draws on
the experience of choice modeling to deal with LAP problems.
The core idea of BHCM is to model heterogeneity of linkages
for LAP under a non-IID assumption. With such specifications,
BHCM can elegantly model the heteroskedastic unary linkages
which are ubiquitous in real world. The final experimental
results manifest the sophistication of our models against other
comparative state-of-the-art methods for different applications.

"http://www.kddcup2012.org/c/kddcup2012-track
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