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Service discovery is one of the most vital components invoived in almost all service applications. Many
researches have been contributed to improve the matching accuracy. However, without a clarified requirement
specification to describe the goals that users really expect to achieve, any matching algorithm is ineffective.
Goal-oriented requirement engineering is a formal requirement analysis methodology which recursively decom-
poses a complex requirement into a set of finer grained goals. Such a hierarchical granulation structure partitions
a requirement into a family of fine grain-sized granules. Furthermore, to handle uncertainties, rough set theory
is employed in granular computing. For any given imprecise user requirement, a set of ordered stratified rough
set approximations can be induced over all possible partitions. These approximations are used to iteratively
refine imprecise requirement and recommend goals most probably desired. We also demonstrate a case to
prove that rough set theory combining with granular computing is powerful to handle imprecise requirements so

as to provide better service quality.
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1. INTRODUCTION

The service-oriented architecture (SOA) has become the first con-
sidered technology to reuse and integrate all kinds of heteroge-
neous applications. One of the most vital issues in almost all of
service applications is the service discovery, so that some stan-
dard interfaces such as UDDI have been proposed to cover such
area. Recently, with the upsurge in semantic technology, the key-
word based discovery becomes powerless in comparison. Thus,
a lot of new technology has introduced meta data to describe ser-
vices semantically such as OWL-S,' SAWSDL.? They provide a
more intelligent and efficient way for services matching.’

However, when a client (a user or an intelligent agent) intends
to retrieve some service, he usually cannot get the services that
he really expected. It is not a surprise because no one has the
knowledge covering all domains so that he cannot express his
requirement exactly in an unfamiliar area. Such uncertain and
imprecise user requirements have to be confronted when discov-
ering services, which has a negative impact on the quality of
the result of retrieved services. Rough Set Theory proposed by
Pawlak® is such a kind of tool to handle the uncertainty. In his
perspective, e-service intelligence requires tools for approximate
reasoning about vague concepts. The rough set based methods
make it possible to deal with imperfect knowledge
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Service discovery can be viewed as a process to find services
whose capabilities are able to satisfy the requirement proposed
by the client. The capabilities of a service may be regard as
goals achieved after execution. Therefore, to discover services
are equivalent to finding goals that clients really want to achieve.
The goal-oriented requirements engineering (GORE) suggested
by van Lamsweerde has long been recognized to be an essential
component involved in the requirements engineering. Goals can
be formulated at different levels of abstraction ranging from high-
level, strategic concerns to low-level, technical concerns.® Goals
at different levels can be seen as a set of requirement granules
to be satisfied in the perspective at that level,

Granular computing”® is a rising research area, The basic
issues of granular computing often involve two related aspects,
the construction of granules and computation with granules.® The
former aspect deals with the formation, representation and inter-
pretation of granule. The latter aspect deals with the utilization of
granules in problem solving. In this paper, we introduce granular
computing to enhance GORE so as to construct a more intelligent
service platform.

2. REQUIREMENTS FORMALIZING WITH
HIERARCHICAL GRANULES

Information granules can be treated as linked collections clumps
of objects drawn together by the criteria of indiscernibility,
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similarity or functionality.”? In GORE, goals provide a pre-
cise criterion for sufficient completeness of a requirements
specification.® Generally, a collection of goals with correlated
functionality to achieve some objective can be regard as a gran-
ule in the requirement space. All granules in this hierarchical
space provide views from different levels, which can zoom in the
requirements specification from general to some specific points.

2.1. Hierarchical Goal Model for Requirement
Refinement

GORE is an effective way for requirements clicitation, speci-
fying, analysis, negotiation and modification. Goals capture the
various objectives to achieve at different levels of abstraction.
Once a set of goals at some level is obtained and validated, it can
be decomposed into a set of subgoals with refinement links.®
As shown in Figure 1, refinement links connect general goals to
more specialized goal recursively, which forms the skeleton of
the goal graph. Such multi-layer structure is derived from Artifi-
cial Intelligence (AI) planning where a goal is satisfied absolutely
when all of its subgoals are satisfied. The goal structure can be
viewed as generated by divide and conquer method to satisfy
some complex requirement, where each goal in this structure is
called an Action Granule (AG).""

In goal model, a goal can be formalized as a clause with a
main verb and several parameters. Each parameter plays some
role with respect to the verb.'! For simplicity, we formalize the
goal concept as a 2-tuple (verb, targer). The element rarget des-
ignates entities afTected by the goal. For example a goal for travel
planning can be presented as: (Plan,,,,, Travel,,,.,). All of the
goal concepts together with the refinement links in the hierarchy
can be regarded as an ontology defining some requirement in a
domain.

2.2. Partition Requirement in Goal Model

As discussed above, the goal model is a hierarchy in which a
goal is satisfied when all its subgoals are satisfied. The leaves
in goal model are called atomic goals (without subgoals). The
goals in higher levels may be viewed as a successive bottom-up
combination of leaf goals, and all of the goals in the hierarchy
can be represented with atomic goals. If the height of a hierarchy
is N, the root goal is top-down decomposed into a set of leave
goals with (N —1) times. All goals in goal model are granules
of different grain size to cover requirement specification.

The granular space for a goal model is defined as:

G ={X|X is a node in the goal hierachy) (1)

Example 1: Given a goal model illustrated by Figure 2, all
granules in the granular space are given:

G =(Ga, Gb, Gd, G1, G2, G3, G4, G5, G6, GT}

Plan Travel

Amange Arrange
Transportation Accommodation

Book Flight Register Arrange Local Reserve Rent
Ticket Luggage Transportation Hotel Apartment

Fig. 1. A hierarchical goal model.

Quety
Weather
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Fig. 2. A 3-layer goal model with ten nodes.

A non-leaf goal can be decomposed into a set consisting of its
direct subgoals. The refinement for a granule into a set of finer
granules may be viewed as zooming-in operation w.'?

Given a granule Gr, we denote zooming-in operation as:

w(G1) = {all direct subgranules of Gt} (2)

Further, if we denote all atomic goals {Gl,G2,..., Gn)
(leaves in goal model) as A(G), given a granule Gi, Gi, can be
refined as a subset of A(G) by finite zooming-in operations. The
root granule is refined as the entire A(G), and the leaves con-
sist of only singleton subsets of A(G). We denote the zooming-
in operation refining a granule into the subset of A(G) as w,(X),
where w,(X) C A(G).

Example 2: Given the goal model as Example 1, refine gran-
ules Gb, Gd, Ga with the zooming-in operations w, w,,:

o(Gb) = w,(Gh) = (G1, G2, G3, G4}
0(Gd) = w,(Gd) = (G5, G6}
w(Ga) = {Gb, G7, Gd}
w,(Ga) = (G, G2, G3, G4, G5, G6, GT}
For any two granules X, Y € G, we can define:
0, (X)Cw,(Y)&= XY (€)

More general, if we denoted XS as a subset of G, then, for
any XS, YS €29 C is defined:

VxCXS—> (FyelS)(xCy)< XSCYS (4)

From the hierarchy, if we select an arbitrary non-leaf node
£ and all its direct and indirect sub nodes, then we can obtain a
new granules set induced by g denoted as U(g), obviously
U(g) S G. Since g can be refined into w,(g), subsets of U(g) can
be selected to form a partitions of w,(g) with different granular-
ities. The set of all partitions constructed from U(g) is denoted
as P(g).

Any partition y € P(g) has following properties:
() @ (X)Nw,(Y)=0 (X,Yey,X#7Y)
(i) Uxey@,(X) = w,(g)

Example 3: Given the granules as Example | and set G, as
the root, construct all possible partitions P(Ga):

1+ {Ga) 2 {{G1, G2, G3, G4, G5, G6, GT})

2 : {Ga.Gd, GT} £ {{G1., G2, G3, Ga}, (G5, G6}, {GT})

v3: {G1, G2, G3, G4, Gd, G7)
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Fig. 3. The Hasse diagram of P(Ga).

¥ {(G1), {G2}. [G3), {G4). (G5, G6), (GT})
v4 : {Gb, G5, G6, G}

Y {G1, G2, G3, G4}, (G5}, {G6), {GT}}

y5 : {{G1}, (G2}, {G3}. (G4}, (G5}, {G6}, {GT}}

Note that all above partitions have the properties (i) and (ii).

Furthermore, P(g) is a bounded lattice L(g)"> whose order
relation < is the inclusion relation given in definition (4).
Figure 3 depicts the Hasse diagram of P(Ga) for Example 3.

Different partitions in P(g) can been viewed as different grain-
sized solutions to achieve the goal g. Given two partitions yl,
72, if y1 < y2, we say 1 is finer than y2, or y2 is coarser than
v1. Thatis, y1 provides a more detailed view over requirements
than y2. Some clients show no care for detail, their requirements
can be modeled in a coarsely granular way, whereas others prefer
involving into the details for certain purpose. Therefore, various
granularities provide both coarse and detailed views to satisfy
different users.

3. DELIVER SERVICES OVER IMPRECISE
REQUIREMENTS

Since clients (users or intelligent agents) may not be
domain experts, they often submit a very imprecise requirement
about some domain. Even if the retrieved services fully match
the submitted requirement, these services still cannot satisfy the
goals that clients really expect to achieve. Hence, it is neces-
sary to help clients clarify their requirement by adding goals they
really desire to achieve and removing goals they do not want to
involve.

3.1. Stratified Rough Set Approximation Space
In Pawlak’s rough set model, the partition induced by an

equivalence relation R on universe U is denoted as U/R =
(CL,C2,..., Cn}, where Ci is an equivalence class of R. Let an
arbitrary subset X of U, every rough set is associated with two
crisp sets, called lower and upper approximation.
The lower approximation of X:
apr(X) = {x € Ci|Ci € X} )
The upper approximation of X:
apr(X) = {x € Ci|CinX # &} (6)
The boundary region of X:

bnd(X) =apr(X) — apr(X) ™

Intuitively, the lower approximation of a set consists of all ele-
ments that definitely belong to the set, whereas the upper approx-
imation constitutes of all elements that possibly belong to the
set, and the boundary region of the set consists of all elements
that cannot be classified uniquely to the set or its complement by
employing available knowledge.’

Dubois and Prade'* defined a rough set as a pair of subsets of
U/R, and the pair of approximation is given:

apx(X) = {CilCi € X) ®)
apr(X) = (Ci|CiN X # @) (9)

The pair of approximations may be viewed as extensions of
Pawlak’s lower and upper approximations. In fact, they are con-
sistent with each other's and every Ci can be seen as a granule.

As discussed in Section 2.2, the partitions in P(G) form a lat-
tice granulation structure L(G). Given a subset X of G, we can
take Egs. (8,9) to compute lower and upper approximations for
each partition in P(G). Further, the stratified rough set approxi-
mations can be produced from L(G).

Example 4: Consider P(G) given in Example 3 and the cor-
responding lattice L(G) illustrated in Figure 3. Given the subset
X = {G3, GS, G6}, the stratified rough set approximations are
depicted in Figure 4.

3.2. Clarify User Requirements in Stratified Rough Set
Approximations Space
The goal model is often constructed by domain experts to
formalize domain requirements specification. Usually, a user
requirement in some domain may be represented by a part of
goals in a goal model. For example, given the goal model of
domain “Travel Planning” as depicted in Figure 1, user require-
ment can be given as: {Gl : (Book, Flight Ticker),G2:
(Arrange, Accommodation)}

However, in fact, the goal model is often much more complex
than this example. Since a client may have little knowledge of
the domain that he is not familiar, he can only give a very impre-
cise requirement which does not cover all goals he desires to
achieve. Therefore, we should recommend some goals which are
most possibly expected by clients so that it may help to clarify
requirements from clients. Here, we employ rough set model as
an effective tool to handle such imprecision and uncertainty. Our
proposal tries to refine user requirements in the stratified rough
approximation spaces discussed previously.

The accuracy of rough set approximation® is defined as:

a(X) = |apr(X)|/|apr(X)| (10)

where |- | denotes the cardinality of a set. Obviously,
0 <a(X) <1 If a(X)=1 then X is called definable

| wieea |
i)
[/vzz ({Gd}iGbGy) |
| V3 ((63,Gd)(G3,Ga)) |

| v5:((G3,G5,G6),(G3.G5.Ge)) |

[ v4: ((G5,Ge},(Gb.G5.G6])

Fig. 4. The stratified rough set approximations of granules set
{G3, G5, G6&}.
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(apr(X) = X = apr(X)), and otherwise, if a(X) < 1 then X is
indefinable or rough: apr(X) C X C ap7(X).

According to Eq. (1), if we denote G as the universe for all
granules in the granular space, then rough set approximations can
be used to measure the degree of X satisfying the requirements
with a given goals set X. If we regard Ci in Egs. (5-9) as a
granule in G, Ci € X represents that X can fully satisfy Ci,
whereas Ci N X # @ represents that X can partially satisfy Ci.

The user requirement % can be clarified through four kinds of
operations:

(1) refine & into finer granules;

(2) generalize 2 into coarser granules;
(3) add desired goals into J&;

(4) remove undesired goals from &.

We demonstrate our method the with the goal model illustrated
by Figure 2. If the initial user requirements are formalized as
goals :{Gb, G5}, then we can obtain the stratified rough set
approximations and corresponding accuracy as shown in Table 1.

In Table I, the accuracy values indicate certainty of the
user requirement in the stratified rough set approximations. The
approximations with the accuracy value 1 are definable and they
all have a pair of equal approximations. If we denote the approx-
imation induced by partition yi as apr,;, where apr,(X) =
gﬂy((X) =apr,;(X), then the set apr,_,(X) is also a bounded
lattice:

aproei (X) = lapr,(Xlapr (X) =ap7,,(X)}  (11)

and the order relation < is the inclusion defined in Eq. (4).
That is, the least element in the lattice implies that the user
requirement should be satisfied in the most detailed way. In con-
trast, the greatest element implies that the user requirement
should involve the least details. A client can choose a proper
grain-sized apr, from apr,_,(X) to describe requirement. For
example, according to Table 1, if a client chooses apr s, it indi-
cates that he is willing to involve more details comparing with
apr,,. Choosing different apr,; can be viewed as clarifying user
requirement through operation (1) or (2). When a client has
selected a apr,; from apr,_,(X), the apr,,; is assigned as the
new user requirement & (A = apry;). Moreover, a client may
do the operation (4) to remove some goals that he does not desire
from .

In fact, we may put more focus on the approximations having
the accuracy value less than 1, because for each granule in bound-
ary region contains a part of goals requested by clients in & and
others not in . Since elements in a same set induced by rough
set approximation are highly correlated, those granules in bound-
ary region most probably contain potential requirements desired
by clients but those clients may miss them in & due to lack of
domain knowledge. Therefore, goals in these granules are best

Table |. Stratified rough set approximations for partltions.

Partition apr apx bnd «

1 {Ga) o {Ga} 0

y2 {Gb, Gd) {Gb} (Gd) 4/8

3 {G1,G2,G3, {G1,G2,G3, G4) {Gd) 4/6
G4, Gd}

v4 {Gb,G5,} {Gb, G5} 2 1

75 {G1,G2, G3, {G1,G2, @3, 2 1
G4, G5} G4, G5}

candidates for recommendation. These recommendations can be
ranked by the accuracy value in a descendent order, because the
higher is the accuracy, the less of modification is required to
make user requirements more complete.

Example 5: If the user requirement R:{G2, G3, G4, G5} and
the corresponding stratified rough set approximations are given
in Table I. List the recommendations:

The recommended granules order by « are:

l'{Gd}aml/b 2'{Gd}a=4/6 3'{Gd}a=0'

Removing duplicated granules and granules which have
existed in A, we can give the recommendations as below:

Rank Recommendation Comment

1 G7 Elements in Gd and
remove G35 existed in R

2 Gb,Ge,Gd Elements in Ga

Clients adding desired goals from recommendations can be
viewed as clarify & through operation (4). It should be noted that
the added granules possibly absorb some small granules which
are included in the new added ones. For example, if a client adds
Gd into 9A:{G2, G3, G4, G5}, G5 is absorbed by Gd because
G5 is contained in Gd. The new & will be {G2, G3, G4, Gd}.

When clients do any operation described above, we get a more
clarified user requirement R from @. If & is still not clear
enough, we can continue a new round clarity to compute the
approximations, boundary and accuracy based on %' and repeat
above 4 kinds operations. Such process makes user requirements
to be clarified iteratively, and the process can stop at any time
if clients think the requirement has become precise enough and
no more refinement are required. We denote the final clarified
user requirement as R, and then we need to find services to
satisfy R.

4. AN ILLUSTRATIVE EXAMPLE

Let us consider the domain “Travel Planning.” If the goal model
of this domain is depicted in Figure 2, we can list all granules
in the granular space:

G = {Ga,Gb, Ge, Gd, G1, G2, G3, G4, G5}, where

Ga ¥ {Plan, Travel)

GhE (Arrange, Transporation}
Ge ¥ {Arrange, Accommodation}

G1 < (Book, Flight Ticker)

G2 {Register, Luggage}

63 < {Arrange, Local Transporation}
G4 ¥ {Reserve, Hotel}

G52 {Rent, Apartment}

Ge' 2 {Query, Weather}

If a user submits a request: “ I want to book a flight ticket and
reserve a hotel room,” by some NLP method,'¢ it is formalized
as the initial requirement, %:{G1, G4}.

|
1
)
|
l



(=K

. 7,135-139, 30 March 2012

Construct all possible partitions P(Ga) for the root Ga:
vl : {Ga)
y2 : {Gb, Ge, G6}
v3:{Gl, G2, G3, G4, Gc, G6}
v4 : {Gb, G4, G5, G6)
¥5 : {G1, G2, G3, G4, G5, G6}

The corresponding order relation of the bounded lattice L(Ga)
is: ySCSy4,y3Sy2<yl.

Now we can easily compute out the stratified rough set approx-
imations for the given requirement R as follows:

Partition apr apx bnd

vl {Ga} 7] {Ga} 0
2 {Gb, Gc} @ {Ga} 1
v3 (G1, G4} (G1, G4} @ 1
v4 (Gb, G4} (G4} {Gb) 1/4
¥5 {G1, G4} (G1, G4) @ 1

The recommended granules order by a are:
1. {Gb}guips 2. {Gb,Gc)oy 3. [Galamo.

Add them into an ordered list: {1 : Gb,2: Gc¢,3: Ga}. The
duplicated recommended granules should be removed when
adding to the list, such as adding Gb in the second time. Then,
the recommendations will be returned to the user:

Rank Recommendation Comment

L G2,G3 Elements in Gb and
remove G/ existed in

2 G5 Elements in G¢ and
remove G4 existed in R

3 Gb, Ge, G6 Elements in Ga

From the recommendations, the user finds that he also desires
to achieve following goals not included in F:

e {Register, Luggage}
63 ¥ {Arrange, Local Transporation)
66 {Query, Weather}

Besides, the user prefers renting an apartment to reserving a
hotel room. So he removes G4 and adds GS. The refined require-
ment becomes: %:{G1, G2, G3, GS, G6}.

Using this new S , the user continues to clarify his require-
ment in second round:

partition apr apx bnd @

vl {Ga} @ {Ga) 0

y2 (Gb, Ge, G6} {Gb, G6} {Gc} 4/6

¥3 {G1, G2, G3, (G, G2, {Ge} 4/6
Ge, G6} G3, G6)

v4 {Gb, G5, G6} {Gb, G5, G6} {Gb} 1

vS {G1, G2, G3, {G1, G2, G3, %] I
G5, G5) G5, G5}

In this round, the user no longer wants to do any change. Two
definable approximations are obtained, which represent the clar-
ified user requirement in different granularities: {Gb, G5, G6}
and {G1, G2, G3, G5, G6}. If the user prefers that a service

provider can arrange transportation for him as a whole, then R <
{Gb, GS, G6} should be chosen as the final clarified requirement,

5. CONCLUSION

In this paper we try to help clients to clarify their initial impre-
cise requirement in a hierarchical granular space over goal
model. Each goal in the goal model corresponds to a granule
in the space, and these granules cover requirements in various
grain sizes. With such hierarchical granulation structure, gran-
ular computing and rough set theory are employed to handle
uncertainties. It can distinguish what has been definable and what
is still uncertain. The clarification process can produce a clari-
fied requirement of a desired granularity by iteratively executing
four kinds of operations in the stratified rough set approxima-
tion space. In fact, we also have designed a matching algorithm
based on six types of granule approximation as service matching
strategies.'”
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