
Service Discovery and Recommendation in Rough Hierarchical Granular
Computing

Liang Hu, Jian Cao

Department of Computer Science and Technology
Shanghai Jiaotong University

Shanghai, China
lianghu@sjtu.edu.cn

cao-jian@cs.sjtu.edu.cn

Zhiping Gu
Department of Electrical Engineering

Shanghai Technical Institute of Electronics &
Information

Shanghai, China
raingzp@sohu.com

Abstract—Service discovery is one of the most vital
components involved in almost all service applications. A lot
of researches have paid attention to improving the matching
accuracy for the given user requirement. Without a clarified
requirement specification to describe the goals user really
wants to achieve, any matching algorithm is useless. Goal-
oriented requirement engineering is a formal requirement
analysis methodology which recursively decompose a
complex requirement into a set of finer grained goals. Such a
hierarchical granulation structure partitions a requirement
into a family of fine grain-sized granules. In order to handle
uncertainties, rough set theory is employed in granular
computing. For any given imprecise user requirement, a set
of ordered stratified rough set approximations can be
induced over all possible partitions. These approximations
are used to iteratively refine imprecise requirement and
recommend goals most probably desired. A matching
algorithm based on six types of granule approximation is
also given to describe different matching strategies for
satisfying user requirement. Through the theoretical
analysis and case study, it shows that rough set theory
combining with granular computing is powerful to handle
imprecise requirements and also provide better service
quality.

Keywords-services discovery; services recommodation;
requirement engineering; granular computing; rough set
theory

I. INTRODUCTION

The service-oriented architecture (SOA) has become
the first considered technology to reuse and integrate all
kinds of heterogeneous applications. One of the most vital
issues covering almost all of service applications is the
service discovery which is the basis of service selection,
composition, execution and so forth. Some standard
interfaces such as UDDI have been proposed to handle
such requirement, but, with the upsurge in semantic
technology, the keyword based discovery has become
more and more powerless. A lot of new technology has
introduced meta data to describe services semantically
such as OWL-S [1], SAWSDL [2]. They provide a more
intelligent and efficient way for services matching [3].

However, when a client (a user or an intelligent agent)
intends to retrieve some service, he usually cannot get the
services that he really wanted. It is not a surprise because
no one has the knowledge covering all domains so that he
cannot express his requirement exactly in an unfamiliar
area. Such uncertain and imprecise user requirements
have to be confronted when discovering services, which
have a direct impact on the quality of retrieved service
result. Rough Set Theory proposed by Pawlak [4] is such
a kind of tool to handle the uncertainty. In his perspective,
e-service intelligence requires tools for approximate
reasoning about vague concepts. The rough set based
methods make it possible to deal with imperfect
knowledge [5].

Service discovery can be viewed as a process to find a
collection of services whose capabilities are able to satisfy
the requirement proposed by the client. The capabilities of
a service may be viewed as goals achieved after execution.
Therefore, to discover services are equivalent to finding
goals that clients really want to achieve. The goal-
oriented requirements engineering (GORE) suggested by
van Lamsweerde has long been recognized to be an
essential component involved in the requirements
engineering. Goals can be formulated at different levels of
abstraction ranging from high-level, strategic concerns to
low-level, technical concerns [6]. Goals at different levels
can be seen as a set of requirement granules to be satisfied
in the perspective at that level. Naturally, with the rising
research on granular computing [7, 8], it is suitable to be
introduced to enhance GORE.

The basic issues of granular computing often involve
two related aspects, the construction of granules and
computation with granules [8]. The former aspect deals
with the formation, representation, and interpretation of
granule; section 2 will cover this aspect to discuss the
construction of hierarchical granules in basis of goal
model. The latter aspect deals with the utilization of
granules in problem solving; section 3 will cover this
aspect to present service recommendation and discovery
in the stratified rough set approximations induced by the
hierarchical requirement granules. An illustrative example
will be given in section 4.

2010 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4305-5/10 $25.00 © 2010 IEEE

DOI 10.1109/APSCC.2010.34

191

II. FORMALIZE REQUIREMENTS WITH HIERARCHICAL
GRANULES

Information granules can be treated as linked

collections clumps of objects drawn together by the
criteria of indiscernibility, similarity or functionality [7,
9]. In GORE, goals provide a precise criterion for
sufficient completeness of a requirements specification
[6]. Generally, a collection of goals with correlated
functionality to achieve some objective can be regard as a
granule in the requirement space. All of the granules at
different levels define the requirements specification from
general to specific.

A. Hierarchical Goal Model for Requirement Refinement

GORE is an effective way for requirements elicitation,

specifying, analysis, negotiation and modification. Goals
capture the various objectives to achieve at different
levels of abstraction. Once a set of goals at some level is
obtained and validated, it can be decomposed into
subgoals with refinement links [6]. As shown in Fig. 1,
refinement links connect general goals to more
specialized goal recursively, which form the skeleton of
the goal graph. Such multi-layer structure is derived from
Artificial Intelligence (AI) planning where a goal is
satisfied absolutely when its subgoals are satisfied. The
goal structure can be viewed as the divide and conquer
method in order to satisfy some complex requirement, and
each goal in this structure is called Action Granule (AG)
[10].

Plan Travel

Arrange
Transportation

Arrange
Accommodation

Book Flight
Ticket

Arrange Local
Transportation

Query
Weather

Register
Luggage

Rent
Apartment

Reserve
Hotel

Fig. 1 A hierarchical goal model

The goal in goal model can be formalized as a clause
with a main verb and several parameters, where each
parameter plays a different role with respect to the verb
[11]. For simplicity, in this paper we formalize the goal
concept as a 2-tuple (verb, target). The element target
designates entities affected by the goal. For example a
goal for travel planning can be presented as: (Planverb,
Traveltarget). All of the goal concepts together with the
refinement links in the hierarchy can be regarded as an
ontology for a certain domain.

B. Partition Requirement in Goal Model

As discussed above, the goal model is a hierarchy in

which a goal is satisfied when its subgoals are satisfied.
The leaves in goal model can be called atomic goal
(without subgoals). The goals in higher levels may be
viewed as a successive bottom-up combination of leave
goals, and all of the goals in the hierarchy can be
represented with leave goals. If the height of a hierarchy
is N, the root goal is top-down decomposed into a set of
leave goals with (N-1) times. All goals in goal model are
granules of different grain size to cover requirement
specification.

The granules space of goal model is defined as:
� = {� | � �� � ��	
 �� �ℎ

���� ℎ�
���ℎ� } (1)

Ga

Gb Gd

G1 G2 G4G3 G6G5

G7

Fig. 2 A 3-layer goal model with ten nodes

A non-leaf goal can be decomposed into a set

consisting of its direct subgoals. The refinement for a
granule into a set of smaller granules may be viewed as
zooming-in operation � [12].

Given a granule Gi, we denote zooming-in operation
as:
�(��) = {��� 	��
�� ���
�����
� �� ��} (2)

Further, if we denote all atomic goals {G1, G2, …, Gn}
(leaves in goal model) as A(G), given a granule Gi, Gi
can be refined as a subset of A(G) by finite zooming-in
operations. The root granule is refined as the entire A(G),
and the leaves consist of only singleton subsets of A(G).
We denote the zooming-in operation refining a granule
into the subset of A(G) as ��(�), where ��(�) ⊆ �(�).

� = {��, ��, �	, �1, �2, �3, �4, �5, �6, �7 }

Example 1, given a goal model illustrated by Fig. 2, all
granules in the hierarchy can be given:

�(��) = ��(��) = {�1, �2, �3, �4 }
�(�) = ��(�) = {�5, �6 }

�(��}) = {��, �7, �	}
��(��) = {�1, �2, �3, �4, �5, �6, �7}

Example 2, consider the goal model of Example 1. Refine
granules Gb, Gd, Ga with the zooming-in operation �
and ��:

192

For any two granules �, � ∈ �, we can define:
��(�) ⊆ ��(�) ⇔ � ⊆ � (3)

More general, if we denoted XS as a subset of G, then,
for any ��, �� ∈ 2�, ⊆ is defined:
∀� ∈ �� → (∃� ∈ ��)(� ⊆ �) ⇔ �� ⊆ �� (4)

From the hierarchy, if we select an arbitrary non-leaf
node g and all its direct and indirect sub nodes, then we
can obtain a new granule set induced by g denoted as
U(g), obviously #(
) ⊆ � . Since g can be refined into
��(
) , a subset of #(
) can be selected to form a
partition of ��(
). The set of all partitions constructed
from #(
) is denoted by P(g).

Any partition $ ∈ %(
) has following properties:
(i) ��(�) ∩ ��(�) = ∅ (�, � ∈ $, � ≠ �)
(ii) ⋃ ��(�)-∈. = ��(
)

Furthermore, %(
) is a bounded lattice /(
) [13]

whose order relation ≼ is the inclusion relation given in
definition (4). Fig.3 depicts the Hasse diagram of %(��)
for Example 3.

γ1

γ3 γ4

γ5

γ2

Fig. 3 The Hasse diagram of P(AG)

Different partitions in %(
) can been viewed as

different grain-sized solutions to achieve the goal g.
Given two partitions $1, $2 , if $1 ≼ $2 , we say $1 is
finer than $2 , or $2 is coarser than $1 . That is, $1
provides a more detailed view of requirements than $2.
Some clients show no care for much detail, their
requirements can be achieved in a coarsely granular way,
whereas other clients prefer involving into the details for

certain purpose. Therefore, various granularities provide
both coarse and detailed views to satisfy different users.

III. DELIVER SERVICES OVER IMPRECISE
REQUIREMENTS

Since clients (users or intelligent agents) are not the

domain experts, with poor domain knowledge, they
always submit a very imprecise requirement. Even if
services are retrieved according to such imprecise
requirement, actually these services cannot satisfy the
goals that clients really want to achieve. Hence, it is
necessary to help clients clarify their requirement
iteratively, adding goals they really desire to achieve and
removing goals they do not want to involve.

A. Stratified Rough Set Approximation Space

In Pawlak’s rough set model, the partition induced by

an equivalence relation R on universe U is denoted as
U/R= {C1, C2, . . ., Cn}, where Ci is an equivalence class
of R. Let an arbitrary subset X of U. Every rough set we
associate two crisp sets, called lower and upper
approximation.

The lower approximation of X:
�8� (�) = {� ∈ 9� | 9� ⊆ �} (5)

The upper approximation of X:
�8�:::::(�) = {� ∈ 9� |9� ∩ � ≠ ∅} (6)

The boundary region of X:
��	(�) = �8�:::::(�) − �8� (�) (7)

Intuitively, the lower approximation of a set consists of
all elements that definitely belong to the set, whereas the
upper approximation of the set constitutes of all elements
that possibly belong to the set, and the boundary region of
the set consists of all elements that cannot be classified
uniquely to the set or its complement, by employing
available knowledge [5].

Dubois and Prade [14] defined a rough set as a pair of
subsets of U/R, and the pair of approximation is given:
�8� (�) = { 9� | 9� ⊆ �} (8)
�8�:::::(�) = {9� |9� ∩ � ≠ ∅} (9)
The pair of approximation may be viewed as extensions
of Pawlak’s lower and upper approximations. Actually,
they are consistent with each other [15]. Every 9� can be
seen as a granule.

As discussed in section 2.2, the partitions in P(G) form
a lattice granulation structure L(G). With a given subset X,
we can use equation (8) (9) to compute lower and upper
approximations for each partition in P(G). Further, the
stratified rough set approximations can be produced from
L(G).

$1: {��} = <{�1, �2, �3, �4, �5, �6, �7}>
$2: {��, �	, �7} = <{�1, �2, �3, �4}, {�5, �6}, {�7}>
$3: {�1, �2, �3, �4, �	, �7}
= <{�1}, {�2}, {�3}, {�4}, {�5, �6 }, {�7}>
$4: {��, �5, �6, �7}

= <{�1, �2, �3, �4}, {�5}, {�6}, {�7}>
$5: <{�1}, {�2}, {�3}, {�4}, {�5}, {�6}, {�7}>

Example 3, If we have the granules given in Example 1
and select Ga as the root, we can construct all possible
partitions %(��):

It is easy to see all above partitions satisfy the properties
(i) & (ii).

193

γ1: (, Ga)

γ3: ({G3,Gd},{G3,Gd}) γ4: ({G5,G6},{Gb,G5,G6})

γ5: ({G3,G5,G6},{G3,G5,G6})

γ2: ({Gd},{Gb,Gd})

Fig. 4 The stratified rough set approximations of set {G3,G5,G6}

B. Clarify User Requirements in Stratified Rough Set
Approximations Space

The goal model is often constructed by domain experts

to formalize domain requirements specification. Usually,
a user requirement in some domain may be represented by
a part of goals in a goal model. For example, given the
goal model of domain “Travel Planning” as depicted in
Fig.1, user requirement can be given as: {G1:(Book,
Flight Ticket), G2:(Arrange, Accommodation)}.

However, in fact, the goal model is often much more
complex than this example. Due to a client not being the
domain experts, he has less knowledge of that domain.
Initially, he can only give a very imprecise requirement
which does not cover all goals he wants to achieve.
Consequently, we should recommend some goals, which
are possible desired by clients, to help clarifying their
requirements. Rough set model is a tool used to handle
imprecision and uncertainty. Our proposal is try to refine
user requirements in the stratified rough approximation
spaces discussed previously.

The accuracy of rough set approximation is defined as
[4]:
?(�) = |�8� (�)| |�8�:::::(�)|⁄ (10)
where | · | denotes the cardinality of a set. Obviously,
0 ≤ ?(�) ≤ 1 . If ?(�) = 1 then X is called definable
(�8� (�) = � = �8�:::::(�)) , and otherwise, if ?(�) < 1
then X is indefinable or rough (�8� (�) ⊂ � ⊂ �8�:::::(�)).

According to equation (1), if we denote G as the
universe for all granules in a goal model, with a given
goal set X, rough set approximations can be used to
measure the degree of X satisfying the requirements. If we
regard Ci in equation (5), (6), (8), (9) as a granule in G,
9� ⊆ � represents that X can fully satisfy Ci, whereas
9� ∩ � ≠ ∅ represents that X can partially satisfy Ci.

The user requirement R can be clarified through four
kinds of operations: (1) refine R into finer granules; (2)

generalize R into coarser granules; (3) add desired goals
into R; (4) remove undesired goals from R.

We demonstrate our method the with the goal model
illustrated by Fig. 2. If the initial user requirements are
formalized as goals R:{Gb,G5}, then we can obtain the
stratified rough set approximations and corresponding
accuracy as shown in Table 1.

TABLE 1. STRATIFIED ROUGH SET APPROXIMATIONS FOR PARTITIONS

Partition �8�::::: �8� Bnd ?
$1 {Ga} ∅ {Ga} 0
$2 {Gb,Gd} {Gb} {Gd} 4/6

$3 {G1,G2,G3,
G4,Gd}

{G1,G2,G3,
G4} {Gd} 4/6

$4 {Gb,G5} {Gb,G5} ∅ 1

$5 {G1,G2,G3,
G4,G5}

{G1,G2,G3,
G4,G5} ∅ 1

In Table 1, the accuracy values indicate certainty

degrees of the user requirement in the stratified rough set
approximations. The approximations with the accuracy
value 1 are definable and they all have a pair of equal
approximations. If we denote the approximation induced
by partition $� as apr.D , where apr.D(�) = �8�.D(�) =
�8�:::::.D(�), then the set �8�EFG(�) is also a bounded lattice,
where:
�8�EFG(�) = H�8�.DI�8�.D(�) = �8�:::::.D(�)J (11)
and the order relation ≼ is the inclusion defined in (4).
That is, the least element in the lattice implies that the
user requirement should be satisfied in the most detailed
way. In contrast, the greatest element implies that the user
requirement should involve the least details. A client can
choose a proper grain-sized apr.D from �8�EFG(�) to
describe his requirement. For example, according to Table
1, if a client chooses �8�.K, it indicates that he is willing
to involve more details comparing with �8�.L. Choosing
different �8�.D can be viewed as clarifying user
requirement through operation (1) or (2). When a client
has selected a apr.D from �8�EFG(�) , the new user
requirement R was assigned as apr.D . Moreover, a client
may do the operation (4) to remove some goals that he
does not desire from R.

The approximations with the accuracy value less than
1 may be more interesting, because the granules in
boundary region contain some goals in user requirements.
Since elements in the same granule are highly correlated,
those granules in boundary region most potentially
desired by clients but they have not given them in R.
Therefore, such goals in these granules are best
candidates for recommendation.

These recommendations are ranked by the accuracy
(not including approximations with accuracy value 1) in a
descendent order, because the higher the accuracy is, the

Example 4, consider P(G) given in Example 3 and the
corresponding lattice L(G) illustrated in Fig.3. Give a
subset X={G3,G5,G6}, then the stratified rough set
approximations are depicted in Fig.4.

194

less modification is required to make user requirements
more complete.

Clients adding desired goals from recommendations

can be viewed as clarify R through operation (4). It
should be noted that the added granules possibly absorb
some small granules which are included in the new added
ones. For example, if a client adds Gd into R:
{G2,G3,G4,G5}, G5 is absorbed by Gd because G5 is
contained in Gd. The new R will be {G2,G3,G4,Gd}.

When clients do any operation described above, we get
a more clarified user requirement R’ from R. If R’ is still
not clear, we can compute the approximations, boundary
and accuracy based on R’ and clarify it through above 4
kinds operations. Such process makes user requirements
to be clarified iteratively, which can be stopped any time
if clients no longer want to do any modification. We
denote the clarified user requirement as ℝ , and it is
supposed to find services to satisfy ℝ.

C. Services Annotation and Retrieval

1) Advertise Services with Granules: Services can be
executed to achieve some goals. Any service may be
annotated with these goals to advertise its capabilities. As
discussed previously, a goal model can be formalized
according to requirements specification for a given
domain. Correspondingly, the granules space G of a goal
model can be given as defined by equation (1). A subset
of G should be selected as the advertisement for every
service, because further service retrieval bases on the
matching between advertisements and user requests. The
advertisements annotation for services can be done
manually or by some semi-automatic tools [16].

A service S may achieve multiple goals by given
different parameters. If we denote the advertisement set of
S under all parameters as A(S)={A1,…An}, then for each
Ai in A(S) can be viewed the advisement under a certain
parameter, in which �� ∈ 2� . That is, every Ai is a
granule, and the service can only achieve all the goals in

Ai as a whole instead of achieving any of them separately.
Following example is provided for intuitive understanding.

2) Match Services in Granule Approximations:

Service discovery is to find a collection of services which
capabilities can satisfy user requirements. In the granular
computing view, the process of service discovery is to
select a set of services whose advertisements can cover all
granules in the clarified user requirements ℝ.

Since any two granules in ℝ are disjoint, the matching
process may be viewed as finding services to satisfy each
granule g in ℝ respectively. The matching algorithm is
described in detail as following:

ALGORITHM 1. SERVICES MATCHING FOR GRANULE g

exactMatchedList = ∅;
/*to store exact matched goals & services*/

pluginMatchedList = ∅;
/*to store target goals, matched advertisement & services*/

unmatchedList = ∅;
/*to store unmatched goals*/

/****Main Procedure****/
if ExactMatching(g) = true then
 matchDegree=Exact;
else if WeakExactMatching(g) = true then

matchDegree=WeakExact;
else if PlugInMatching (g) = true then

matchDegree= PlugIn;
else

WeakPlugInMatching();
if unmatchedList = ∅ then

matchDegree= WeakPlugin;
else if (exactMatchedList≠ ∅ or

 pluginMatchedList≠ ∅) then
matchDegree= Subsumes;

Example 5, if the user requirement R:{G2,G3,G4,G5} and
the corresponding stratified rough set approximations are
give in Table 1. List the recommendations:
The recommended granules order by ? are:
1. {�	} EFL/O 2.{�	} EFL/O 3. {��} EFP
Remove duplicated granules and granules have existed in
R. Following gives the final recommendations:

Rank Recommendation Comment

1 G7 Elements in Gd and
remove G5 existed in R

2 Gb,Gc,Gd Elements in Ga

Example 6, travel agencies usually arrange tour for
customer as a package including transportation and
accommodation. They hardly sell flight tickets or hotel
rooms individually.
Given the goal model shown in Fig. 1, the service S
provided by travel agencies is advertised as: A(S)={A1},
where A1={G1,G2}, �1 ≝ (�����

, R����8��������)
and �2 ≝ (�����

, ����SS�	�����) . It implies that
the execution of S will achieve {G1,G2} as a whole. You
cannot achieve the goal G1 or G2 separately by the
service.
If a travel agency sells G1,G2 separately in addition to A1,
the advertisement will be:
A(S)={A1,A2,A3}
where A1={G1,G2}, A2={G1} and A3={G2}

195

else
matchDegree= Fail;

end if
end if

/****Sub Procedures****/
ExactMatching(g)
{
if exists a service S,
T∃�� ∈ �(�)U({
} = ��) then

exactMatchedList.append(g, S);
return true;

end if
 return false;
}

WeakExactMatching(g)
{
 if g is not the atomic goal

for each x in �(
)
/*�(
) is the zooming-in operation defined in (2)*/
 if not ExactMatching(x) then
 WeakExactMatching(x);
 end if

end for
else

unmatchedList.append(x);
end if
}

PlugInMatching(g)
{
if exists a service S,
T∃�� ∈ �(�)U({
} ⊂ ��) then
/*{
}, �� ∈ 2� ,
⊂ relation can be judged by the definition (4)*/

pluginMatchedList.append(g, Ai, S);
return true;

end if
return true;
}

WeakPlugInMatching ()
{
for each x in unmatchedList

if PlugInMatching (x)=true then
 unmatchedList.remove(x);
end if

end for
}

Above algorithm can be explained intuitively in

granule approximations. These approximations can be
classified into six types: {Exact, WeakExact, Plugin,
WeakPlugin, Subsumes, Fail}. We borrow such

measurements from the classic service matching
algorithm [3] and add two additional metrics to describe
matching degree.
Exact. This is the perfect way to satisfy the granule g in
user requirement. That is, we can find a service S, one of
the advertisements Ai in A(S) is equal to {g}.
WeakExact. Usually, we cannot always find a service
perfect matching the requirement g. Since g can be
decomposed into finer granules, we try to find a set of
services satisfying each finer granule exactly. If there
some granules still cannot be exactly matched, they would
be zoomed in recursively up to atomic goals. Actually, {g}
is the greatest element in the bounded lattice L(g) (see
2.2). WeakExact matching is to find a partition $ ≼ {
},
and every element in $ is exactly matched.
Plugin. Given a service S, Ai is an advertisement in A(S).
If {
} ⊆ �� (see the definition (4) in 2.2), we call it as
Plugin matching.
WeakPlugin. If WeakExact matching fails, {
} has been
refined as a partition $ in which all unmatched granules
belong to A(g), i.e. these granules cannot be zoomed in
any more. Then we try to find a Plugin matching for these
unmatched granules.
Subsumes. After WeakPlugin matching, if some granules
are still unmatched, we say g can only be satisfied
partially and call thus matching is Subsumes.
Fail. If nothing matches.

This algorithm produces three lists: exactMatchedList,
pluginMatchedList and unmatchedList. In which,
unmatchedList is used for exception handling for these
unsatisfied goals; pluginMatchedList can be used for extra
cost estimation for further decision. If we denote V(
) is
the cost function (cost may be money, time, etc.) to
compute the cost for achieving g, then extra cost can be
estimated:
Δ = X V(�. �	Z) − V(�.
)

[\]

 ≅ ∑ V(�. �	Z − {�.
})[\] (12)
where P represents pluginMatchedList, Adv represents Ai
Plugin matching the target goal g ({
} ⊆ ��, �� ∈ �(�),
S is the matched service).

Other granules in requirements ℝ can use the same
algorithm to find services. Finally, we obtain a set of
services satisfying each granule in ℝ

IV. AN ILLUSTRATIVE EXAMPLE

Let us consider the domain “Travel Planning”. If the
goal model of this domain is depicted in Fig. 2, we obtain
all granules:
G={Ga,Gb,Gc,Gd,G1,G2,G3,G4,G5}, where
Ga:{Plan, Travel},
Gb:{Arrange, Transportation },
Gc:{Arrange, Accommodation },

196

G1:{Book, FlightTicket},
G2:{Register, Luggage},
G3:{Arrange, LocalTranportaion},
G4:{Reserve, Hotel},
G5:{Rent, Apartment},
G6{Query, Weather}

If a user submits a request: “I want to book a flight
ticket and reserve a hotel room”, by some NLP method
[16], it is formalized as the initial requirement, R:{G1,G4}.

Construct all possible partitions P(Ga) for the root Ga:
$1: {��}
$2: {��, ��, �6}
$3: {�1, �2, �3, �4, ��, �6}
$4: {��, �4, �5, �6}
$5: {�1, �2, �3, �4, �5, �6}

The corresponding order relation of the bounded lattice
L(Ga) is: $5 ⊆ $4, $3 ⊆ $2 ⊆ $1

Now we can compute the stratified rough set
approximations for the given requirement R:

Partition �8�::::: �8� Bnd ?

$1 {Ga} ∅ {Ga} 0
$2 {Gb,Gc} ∅ {Gb,Gc} 0
$3 {G1,G4} {G1,G4} ∅ 1
$4 {Gb,G4} {G4} {Gb} 1/4
$5 {G1,G4} {G1,G4} ∅ 1

The recommended granules order by ? are:

1. {��} EFG/L
2. {��, ��} EFP
3. {��} EFP

Add them into an ordered list: {1:Gb, 2:Gc, 3:Ga}.
The duplicated recommended granules should be removed
when adding to the list, such as adding Gb in the second
time. Then, the recommendations will be returned to the
user:

Rank Recommendation Comment

1 G2,G3 Elements in Gb and
remove G1 existed in R

2 G5 Elements in Gc and
remove G4 existed in R

3 Gb,Gc,G6 Elements in Ga

From the recommendations, the user finds that he also

desires to achieve following goals not included in R:
G2:{Register, Luggage},
G3:{Arrange, LocalTranportaion}
G6{Query, Weather}

Besides, the user prefers renting an apartment to
reserving a hotel room. So he removes G4 and adds G5.
The refined requirement becomes: R:{G1,G2,G3,G5,G6}.

Using this new R, the user continues to clarify his
requirement in second round:

Partition �8�::::: �8� Bnd ?
$1 {Ga} ∅ {Ga} 0
$2 {Gb,Gc,G6} {Gb,G6} {Gc} 4/6

$3 {G1,G2,G3
,Gc,G6}

{ G1,G2,G3,
G6} {Gc} 4/6

$4 {Gb,G5,G6} {Gb,G5,G6} {Gb} 1

$5 {G1G2,G3,
G5,G5}

{G1G2,G3,
G5,G5} ∅ 1

 In this round, the user no longer wants to do any

change. Two definable approximations are obtained,
which represent the clarified user requirement in different
granularities: {Gb,G5,G6} and {G1,G2,G3,G5,G6}. If the
user prefers that a service provider can arrange
transportation for him as a whole, then {Gb,G5,G6}
should be chosen as the final clarified requirement ℝ.

Assume all services and corresponding advertisements
related to this domain are listed below:
S1: A(S1):{{Gb,Gc}}
S2: A(S2):{{G6}}
S3: A(S3):{{G1,G4}}
S4: A(S4):{{G3,G4},{G5}}
S5: A(S5):{{G2}}

For granule Gb in ℝ, it cannot find a service with a
Exact matching degree. We zoom in Gb by the operation
�(��), then we obtain a finer granules set {G1,G2,G3}.
{�2} ∈ �(�5) , so S5 can satisfy G2 exactly. {�1} ⊂
�(�3), {�3} ⊂ �(�4), hence S3, S4 are Plugin matching
for G1 and G3 respectively. Since all granules in �(��)
are matched, we can say Gb is a WeakPlugin matching
with the retrieved services: {G1:S3:Plugin, G2:S5:Exact,
G3:S4:Plugin}. Furthermore, it is easy to see S1 is a
Plugin matching of Gb. Then we have two solutions to
satisfy Gb:
WeakPlugin Solution:

{G1:S3:Plugin, G2:S5:Exact, G3:S4:Plugin}
Plugin Solution:

{G1:S1:Plugin }
To determine which solution is better, we can quantify
them by computing the extra cost (using the extra cost
function defined in (12)) for those plug-in matched goals
for each solution:
Δ`bcdefghij = V({�1, �4} − {�1})

+ V({�3, �4} − {�3}) = 2V({�4})
Δefghij = V({��, ��} − {��}) = V({��})

The cost can be estimated the by historical data.
Assume 2V({�4}) > V({��}) , namely Δ`bcdefghij >
mefghij, we can say that the Plugin solution is better than
WeakPlugin one. Therefore, S1 is the best candidate to
achieve Gb.

Similarly, {�5} ∈ �(�4), {�6} ∈ �(�2), so S4 and S2
are Exact matching of G5 and G6 respectively.

Finally, services retrieved to satisfy ℝ are returned to
the user: {Gb:{S1}, G5:{S4}, G6:{S2}}

197

V. CONCLUSION

In this paper we pay no attention to improving the
precision of service discovery with a given request, but
try to help clients to clarify their initial imprecise
requirement in a multi-layer goal model. Each goal in the
goal model is regard as a granule, and these granules
cover requirements in various grain sizes. According to
such hierarchical granulation, granular computing and
rough set theory are employed to handle uncertainties,
which distinguishes what has been definable and what is
still uncertain. The iterative clarification process is to do
four kinds of operations in the stratified rough set
approximation space and produce a clarified requirement
with a client desired granularity at length. Finally, a
matching algorithm is provided in basis of six types of
granule approximations, which deals with the matching
process in the granular computing view.

We believe that the combination of granular
computing and rough set theory will lead to many new
methodologies for problem solving in service computing.

ACKNOWLEDGEMENTS

The paper is partially supported by China National
Science Foundation (Granted Number: 60873230,
61073021), Scientific Research Projects of STCSM
(Granted Number 08JC1411700, 10511501503 and
10692101400), National High-Tech Research and
Development Plan of China (Granted Number:
2006AA01A124) and Program for New Century
Excellent Talents in University (Granted Number: NCET-
08-0347).

REFERENCES

[1] D. Martin, et al., "OWL-S 1.2 Release," Available at:

http://www.daml.org/services/owl-s/1.2, 2008.
[2] J. Farrell and H. Lausen, "Semantic annotations for

WSDL and XML schema," Available at:
http://www.w3.org/TR/sawsdl/, 2007.

[3] M. Paolucci, et al., "Semantic matching of Web
services capabilities," Semantic Web - Iswc 2002,
vol. 2342, pp. 333-347, 2002.

[4] Z. Pawlak, Rough sets: Theoretical aspects of
reasoning about data: Springer, 1991.

[5] Z. Pawlak and A. Skowron, "Rough Sets and
Conflict Analysis," E-Service Intelligence, pp. 35-74,
2007.

[6] A. van Lamsweerde, "Goal-oriented requirements
engineering: A guided tour," Fifth Ieee International
Symposium on Requirements Engineering,
Proceedings, pp. 249-262, 2000.

[7] L. Zadeh, "Toward a theory of fuzzy information
granulation and its centrality in human reasoning
and fuzzy logic," Fuzzy sets and systems, vol. 90, pp.
111-127, 1997.

[8] Y. Yao, "Granular computing: basic issues and
possible solutions," 2000, pp. 186-189.

[9] A. Skowron and J. Stepaniuk, "Information granules:
towards foundations of granular computing,"
International Journal of Intelligent Systems, vol. 16,
pp. 57-85, 2001.

[10] L. Zadeh, "From computing with numbers to
computing with words¡ªfrom manipulation of
measurements to manipulation of perceptions,"
Intelligent Systems and Soft Computing, pp. 3-40,
2000.

[11] C. Rolland, et al., "Guiding goal modeling using
scenarios," Ieee Transactions on Software
Engineering, vol. 24, pp. 1055-1071, Dec 1998.

[12] Y. Yao, "A partition model of granular computing,"
Transactions on Rough Sets I, pp. 232-253, 2004.

[13] Y. Y. Yao, "Information granulation and rough set
approximation," International Journal of Intelligent
Systems, vol. 16, pp. 87-104, Jan 2001.

[14] D. Dubois and H. Prade, "Rough Fuzzy Sets and
Fuzzy Rough Sets," International Journal of general
systems, vol. 17, pp. 191-209, 1990.

[15] Y. Yao, "Combination of rough and fuzzy sets based
on a-level sets," Rough sets and data mining:
analysis for imprecise data, pp. 301-321, 1997.

[16] L. Hu, et al., "Modeling Semantic Web Service
using Semantic Templates," 2008, pp. 165-172.

198

