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Abstract—Service discovery is one of the most vital 
components involved in almost all service applications. A lot 
of researches have paid attention to improving the matching 
accuracy for the given user requirement. Without a clarified 
requirement specification to describe the goals user really 
wants to achieve, any matching algorithm is useless. Goal-
oriented requirement engineering is a formal requirement 
analysis methodology which recursively decompose a 
complex requirement into a set of finer grained goals. Such a 
hierarchical granulation structure partitions a requirement 
into a family of fine grain-sized granules. In order to handle 
uncertainties, rough set theory is employed in granular 
computing. For any given imprecise user requirement, a set 
of ordered stratified rough set approximations can be 
induced over all possible partitions. These approximations 
are used to iteratively refine imprecise requirement and 
recommend goals most probably desired. A matching 
algorithm based on six types of granule approximation is 
also given to describe different matching strategies for 
satisfying user requirement. Through the theoretical 
analysis and case study, it shows that rough set theory 
combining with granular computing is powerful to handle 
imprecise requirements and also provide better service 
quality. 

Keywords-services discovery; services recommodation; 
requirement engineering; granular computing; rough set 
theory 

 

I. INTRODUCTION 
 

The service-oriented architecture (SOA) has become 
the first considered technology to reuse and integrate all 
kinds of heterogeneous applications. One of the most vital 
issues covering almost all of service applications is the 
service discovery which is the basis of service selection, 
composition, execution and so forth. Some standard 
interfaces such as UDDI have been proposed to handle 
such requirement, but, with the upsurge in semantic 
technology, the keyword based discovery has become 
more and more powerless. A lot of new technology has 
introduced meta data to describe services semantically 
such as OWL-S [1], SAWSDL [2]. They provide a more 
intelligent and efficient way for services matching [3]. 

However, when a client (a user or an intelligent agent) 
intends to retrieve some service, he usually cannot get the 
services that he really wanted. It is not a surprise because 
no one has the knowledge covering all domains so that he 
cannot express his requirement exactly in an unfamiliar 
area. Such uncertain and imprecise user requirements 
have to be confronted when discovering services, which 
have a direct impact on the quality of retrieved service 
result. Rough Set Theory proposed by Pawlak [4] is such 
a kind of tool to handle the uncertainty. In his perspective, 
e-service intelligence requires tools for approximate 
reasoning about vague concepts. The rough set based 
methods make it possible to deal with imperfect 
knowledge [5]. 

Service discovery can be viewed as a process to find a 
collection of services whose capabilities are able to satisfy 
the requirement proposed by the client. The capabilities of 
a service may be viewed as goals achieved after execution. 
Therefore, to discover services are equivalent to finding 
goals that clients really want to achieve. The goal-
oriented requirements engineering (GORE) suggested by 
van Lamsweerde has long been recognized to be an 
essential component involved in the requirements 
engineering. Goals can be formulated at different levels of 
abstraction ranging from high-level, strategic concerns to 
low-level, technical concerns [6]. Goals at different levels 
can be seen as a set of requirement granules to be satisfied 
in the perspective at that level. Naturally, with the rising 
research on granular computing [7, 8], it is suitable to be 
introduced to enhance GORE. 

The basic issues of granular computing often involve 
two related aspects, the construction of granules and 
computation with granules [8]. The former aspect deals 
with the formation, representation, and interpretation of 
granule; section 2 will cover this aspect to discuss the 
construction of hierarchical granules in basis of goal 
model. The latter aspect deals with the utilization of 
granules in problem solving; section 3 will cover this 
aspect to present service recommendation and discovery 
in the stratified rough set approximations induced by the 
hierarchical requirement granules. An illustrative example 
will be given in section 4. 
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II. FORMALIZE REQUIREMENTS WITH HIERARCHICAL 
GRANULES 

 
Information granules can be treated as linked 

collections clumps of objects drawn together by the 
criteria of indiscernibility, similarity or functionality [7, 
9]. In GORE, goals provide a precise criterion for 
sufficient completeness of a requirements specification 
[6]. Generally, a collection of goals with correlated 
functionality to achieve some objective can be regard as a 
granule in the requirement space. All of the granules at 
different levels define the requirements specification from 
general to specific. 

 

A. Hierarchical Goal Model for Requirement Refinement 
 
GORE is an effective way for requirements elicitation, 

specifying, analysis, negotiation and modification. Goals 
capture the various objectives to achieve at different 
levels of abstraction. Once a set of goals at some level is 
obtained and validated, it can be decomposed into 
subgoals with refinement links [6]. As shown in Fig. 1, 
refinement links connect general goals to more 
specialized goal recursively, which form the skeleton of 
the goal graph. Such multi-layer structure is derived from 
Artificial Intelligence (AI) planning where a goal is 
satisfied absolutely when its subgoals are satisfied. The 
goal structure can be viewed as the divide and conquer 
method in order to satisfy some complex requirement, and 
each goal in this structure is called Action Granule (AG) 
[10]. 

 
Plan Travel

Arrange
Transportation

Arrange
Accommodation

Book Flight
Ticket

Arrange Local
Transportation

Query
Weather

Register
Luggage

Rent
Apartment

Reserve
Hotel

Fig. 1 A hierarchical goal model 
 

The goal in goal model can be formalized as a clause 
with a main verb and several parameters, where each 
parameter plays a different role with respect to the verb 
[11]. For simplicity, in this paper we formalize the goal 
concept as a 2-tuple (verb, target). The element target 
designates entities affected by the goal. For example a 
goal for travel planning can be presented as: (Planverb, 
Traveltarget). All of the goal concepts together with the 
refinement links in the hierarchy can be regarded as an 
ontology for a certain domain. 

B. Partition Requirement in Goal Model 
 
As discussed above, the goal model is a hierarchy in 

which a goal is satisfied when its subgoals are satisfied. 
The leaves in goal model can be called atomic goal 
(without subgoals). The goals in higher levels may be 
viewed as a successive bottom-up combination of leave 
goals, and all of the goals in the hierarchy can be 
represented with leave goals. If the height of a hierarchy 
is N, the root goal is top-down decomposed into a set of 
leave goals with (N-1) times. All goals in goal model are 
granules of different grain size to cover requirement 
specification. 

The granules space of goal model is defined as: 
� = {� | � �� � ��	
 �� �ℎ
 
���� ℎ�
���ℎ� }             (1) 
 

 
Ga

Gb Gd

G1 G2 G4G3 G6G5

G7

 
Fig. 2 A 3-layer goal model with ten nodes 

 
A non-leaf goal can be decomposed into a set 

consisting of its direct subgoals. The refinement for a 
granule into a set of smaller granules may be viewed as 
zooming-in operation � [12].  

Given a granule Gi, we denote zooming-in operation 
as:  
�(��) = {��� 	��
�� ���
�����
� �� ��}                   (2) 

Further, if we denote all atomic goals {G1, G2, …, Gn} 
( leaves in goal model ) as A(G), given a granule Gi, Gi 
can be refined as a subset of A(G) by finite zooming-in 
operations. The root granule is refined as the entire A(G), 
and the leaves consist of only singleton subsets of A(G). 
We denote the zooming-in operation refining a granule 
into the subset of A(G) as ��(�), where ��(�) ⊆ �(�). 

� = {��, ��, �	, �1, �2, �3, �4, �5, �6, �7 } 

Example 1, given a goal model illustrated by Fig. 2, all 
granules in the hierarchy can be given: 

�(��) = ��(��) = {�1, �2, �3, �4 } 
�(�	) = ��(�	) = {�5, �6 } 

�(��}) = {��, �7, �	} 
��(��) = {�1, �2, �3, �4, �5, �6, �7} 

Example 2, consider the goal model of Example 1. Refine 
granules Gb, Gd, Ga with the zooming-in operation � 
and ��: 
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For any two granules �, � ∈ �, we can define:  
��(�) ⊆ ��(�) ⇔ � ⊆ �                                             (3) 

More general, if we denoted XS as a subset of G, then, 
for any ��, �� ∈  2�, ⊆ is defined: 
∀� ∈ �� → (∃� ∈ ��)(� ⊆ �) ⇔ �� ⊆ ��                 (4) 

From the hierarchy, if we select an arbitrary non-leaf 
node g and all its direct and indirect sub nodes, then we 
can obtain a new granule set induced by g denoted as 
U(g), obviously #(
) ⊆ � . Since g can be refined into 
��(
) , a subset of #(
)  can be selected to form a 
partition of ��(
). The set of all partitions constructed 
from #(
) is denoted by P(g).  

Any partition $ ∈ %(
) has following properties: 
(i) ��(�) ∩ ��(�) = ∅                      (�, � ∈ $, � ≠ �) 
(ii) ⋃ ��(�)-∈. = ��(
) 
 

 
Furthermore, %(
)  is a bounded lattice /(
)  [13] 

whose order relation ≼ is the inclusion relation given in 
definition (4). Fig.3 depicts the Hasse diagram of %(��) 
for Example 3. 
 

γ1

γ3 γ4

γ5

γ2

 
Fig. 3 The Hasse diagram of P(AG) 

  
Different partitions in %(
)  can been viewed as 

different grain-sized solutions to achieve the goal g. 
Given two partitions $1, $2 , if $1 ≼ $2 , we say $1  is 
finer than $2 , or $2  is coarser than $1 . That is, $1 
provides a more detailed view of requirements than $2. 
Some clients show no care for much detail, their 
requirements can be achieved in a coarsely granular way, 
whereas other clients prefer involving into the details for 

certain purpose. Therefore, various granularities provide 
both coarse and detailed views to satisfy different users.  

 

III. DELIVER SERVICES OVER IMPRECISE 
REQUIREMENTS 

 
Since clients (users or intelligent agents) are not the 

domain experts, with poor domain knowledge, they 
always submit a very imprecise requirement. Even if 
services are retrieved according to such imprecise 
requirement, actually these services cannot satisfy the 
goals that clients really want to achieve. Hence, it is 
necessary to help clients clarify their requirement 
iteratively, adding goals they really desire to achieve and 
removing goals they do not want to involve. 

 

A. Stratified Rough Set Approximation Space 
 
In Pawlak’s rough set model, the partition induced by 

an equivalence relation R on universe U is denoted as 
U/R= {C1, C2, . . ., Cn}, where Ci is an equivalence class 
of R. Let an arbitrary subset X of U. Every rough set we 
associate two crisp sets, called lower and upper 
approximation. 

The lower approximation of X: 
�8� (�)  =  {� ∈  9� | 9� ⊆  �}                                    (5) 

The upper approximation of X: 
�8�:::::(�) =  {� ∈  9� |9� ∩  � ≠  ∅}                               (6) 

The boundary region of X: 
��	(�) =  �8�:::::(�) −  �8� (�)                                      (7) 

Intuitively, the lower approximation of a set consists of 
all elements that definitely belong to the set, whereas the 
upper approximation of the set constitutes of all elements 
that possibly belong to the set, and the boundary region of 
the set consists of all elements that cannot be classified 
uniquely to the set or its complement, by employing 
available knowledge [5]. 

Dubois and Prade [14] defined a rough set as a pair of 
subsets of U/R, and the pair of approximation is given: 
�8� (�)  =  { 9� | 9� ⊆  �}                                            (8) 
�8�:::::(�)  =  {9� |9� ∩  � ≠  ∅}                                       (9) 
The pair of approximation may be viewed as extensions 
of Pawlak’s lower and upper approximations. Actually, 
they are consistent with each other [15]. Every 9� can be 
seen as a granule. 

As discussed in section 2.2, the partitions in P(G) form 
a lattice granulation structure L(G). With a given subset X, 
we can use equation (8) (9) to compute lower and upper 
approximations for each partition in P(G). Further, the 
stratified rough set approximations can be produced from 
L(G). 

 

$1: {��} = <{�1, �2, �3, �4, �5, �6, �7}> 
$2: {��, �	, �7} = <{�1, �2, �3, �4}, {�5, �6}, {�7}> 
$3: {�1, �2, �3, �4, �	, �7}         
=  <{�1}, {�2}, {�3}, {�4}, {�5, �6 }, {�7}> 
$4: {��, �5, �6, �7}         

= <{�1, �2, �3, �4}, {�5}, {�6}, {�7}> 
$5: <{�1}, {�2}, {�3}, {�4}, {�5}, {�6}, {�7}> 

Example 3,  If we have the granules given in Example 1 
and select Ga as the root, we can construct all possible 
partitions %(��): 

It is easy to see all above partitions satisfy the properties 
(i) & (ii). 
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γ1: ( , Ga)

γ3: ({G3,Gd},{G3,Gd}) γ4: ({G5,G6},{Gb,G5,G6})

γ5: ({G3,G5,G6},{G3,G5,G6})

γ2: ({Gd},{Gb,Gd})

 
Fig. 4 The stratified rough set approximations of set {G3,G5,G6} 

 

B. Clarify User Requirements in Stratified Rough Set 
Approximations Space 

 
The goal model is often constructed by domain experts 

to formalize domain requirements specification. Usually, 
a user requirement in some domain may be represented by 
a part of goals in a goal model. For example, given the 
goal model of domain “Travel Planning” as depicted in 
Fig.1, user requirement can be given as: {G1:(Book, 
Flight Ticket), G2:(Arrange, Accommodation)}. 

However, in fact, the goal model is often much more 
complex than this example. Due to a client not being the 
domain experts, he has less knowledge of that domain. 
Initially, he can only give a very imprecise requirement 
which does not cover all goals he wants to achieve. 
Consequently, we should recommend some goals, which 
are possible desired by clients, to help clarifying their 
requirements. Rough set model is a tool used to handle 
imprecision and uncertainty. Our proposal is try to refine 
user requirements in the stratified rough approximation 
spaces discussed previously. 

The accuracy of rough set approximation is defined as 
[4]: 
?(�) =  |�8� (�)| |�8�:::::(�)|⁄                                        (10) 
where | ·  | denotes the cardinality of a set. Obviously, 
0 ≤  ?(�) ≤ 1 . If ?(�) = 1  then X is called definable 
( �8� (�) = � = �8�:::::(�)) , and otherwise, if ?(�) < 1 
then X is indefinable or rough (�8� (�) ⊂ � ⊂ �8�:::::(�)). 

According to equation (1), if we denote G as the 
universe for all granules in a goal model, with a given 
goal set X, rough set approximations can be used to 
measure the degree of X satisfying the requirements. If we 
regard Ci in equation (5), (6), (8), (9) as a granule in G, 
9� ⊆  �  represents that X can fully satisfy Ci, whereas 
9� ∩  � ≠  ∅ represents that X can partially satisfy Ci.  

The user requirement R can be clarified through four 
kinds of operations: (1) refine R into finer granules; (2) 

generalize R into coarser granules; (3) add desired goals 
into R; (4) remove undesired goals from R. 

We demonstrate our method the with the goal model 
illustrated by Fig. 2. If the initial user requirements are 
formalized as goals R:{Gb,G5}, then we can obtain the 
stratified rough set approximations and corresponding 
accuracy as shown in Table 1. 

TABLE 1. STRATIFIED ROUGH SET APPROXIMATIONS FOR PARTITIONS 

Partition �8�::::: �8� Bnd ? 
$1 {Ga} ∅ {Ga} 0 
$2 {Gb,Gd} {Gb} {Gd} 4/6 

$3 {G1,G2,G3,
G4,Gd} 

{G1,G2,G3,
G4} {Gd} 4/6 

$4 {Gb,G5} {Gb,G5} ∅ 1 

$5 {G1,G2,G3,
G4,G5} 

{G1,G2,G3,
G4,G5} ∅ 1 

 
In Table 1, the accuracy values indicate certainty 

degrees of the user requirement in the stratified rough set 
approximations. The approximations with the accuracy 
value 1 are definable and they all have a pair of equal 
approximations. If we denote the approximation induced 
by partition $�  as apr.D , where apr.D(�) = �8�.D(�) =
�8�:::::.D(�), then the set �8�EFG(�) is also a bounded lattice, 
where: 
�8�EFG(�) = H�8�.DI�8�.D(�) = �8�:::::.D(�)J               (11) 
and the order relation ≼ is the inclusion defined in (4). 
That is, the least element in the lattice implies that the 
user requirement should be satisfied in the most detailed 
way. In contrast, the greatest element implies that the user 
requirement should involve the least details. A client can 
choose a proper grain-sized apr.D  from �8�EFG(�)  to 
describe his requirement. For example, according to Table 
1, if a client chooses �8�.K, it indicates that he is willing 
to involve more details comparing with �8�.L. Choosing 
different �8�.D  can be viewed as clarifying user 
requirement through operation (1) or (2). When a client 
has selected a apr.D  from �8�EFG(�) , the new user 
requirement R was assigned as apr.D . Moreover, a client 
may do the operation (4) to remove some goals that he 
does not desire from R. 

The approximations with the accuracy value less than 
1 may be more interesting, because the granules in 
boundary region contain some goals in user requirements. 
Since elements in the same granule are highly correlated, 
those granules in boundary region most potentially 
desired by clients but they have not given them in R. 
Therefore, such goals in these granules are best 
candidates for recommendation. 

These recommendations are ranked by the accuracy 
(not including approximations with accuracy value 1) in a 
descendent order, because the higher the accuracy is, the 

Example 4, consider P(G) given in Example 3 and the 
corresponding lattice L(G) illustrated in Fig.3. Give a 
subset X={G3,G5,G6}, then the stratified rough set 
approximations are depicted in Fig.4. 
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less modification is required to make user requirements 
more complete.  

 

 
Clients adding desired goals from recommendations 

can be viewed as clarify R through operation (4). It 
should be noted that the added granules possibly absorb 
some small granules which are included in the new added 
ones. For example, if a client adds Gd into R: 
{G2,G3,G4,G5}, G5 is absorbed by Gd because G5 is 
contained in Gd. The new R will be {G2,G3,G4,Gd}. 

When clients do any operation described above, we get 
a more clarified user requirement R’ from R. If R’ is still 
not clear, we can compute the approximations, boundary 
and accuracy based on R’ and clarify it through above 4 
kinds operations. Such process makes user requirements 
to be clarified iteratively, which can be stopped any time 
if clients no longer want to do any modification. We 
denote the clarified user requirement as ℝ , and it is 
supposed to find services to satisfy ℝ. 
 

C. Services Annotation and Retrieval 
 

1) Advertise Services with Granules: Services can be 
executed to achieve some goals. Any service may be 
annotated with these goals to advertise its capabilities. As 
discussed previously, a goal model can be formalized 
according to requirements specification for a given 
domain. Correspondingly, the granules space G of a goal 
model can be given as defined by equation (1). A subset 
of G should be selected as the advertisement for every 
service, because further service retrieval bases on the 
matching between advertisements and user requests. The 
advertisements annotation for services can be done 
manually or by some semi-automatic tools [16]. 

A service S may achieve multiple goals by given 
different parameters. If we denote the advertisement set of 
S under all parameters as A(S)={A1,…An}, then for each 
Ai in A(S) can be viewed the advisement under a certain 
parameter, in which  �� ∈ 2� . That is, every Ai is a 
granule, and the service can only achieve all the goals in 

Ai as a whole instead of achieving any of them separately. 
Following example is provided for intuitive understanding. 
 

 
2) Match Services in Granule Approximations: 

Service discovery is to find a collection of services which 
capabilities can satisfy user requirements. In the granular 
computing view, the process of service discovery is to 
select a set of services whose advertisements can cover all 
granules in the clarified user requirements ℝ. 

Since any two granules in ℝ are disjoint, the matching 
process may be viewed as finding services to satisfy each 
granule g in ℝ respectively. The matching algorithm is 
described in detail as following: 
 

ALGORITHM 1. SERVICES MATCHING FOR GRANULE g 

exactMatchedList = ∅;  
/*to store exact matched goals & services*/ 
 
pluginMatchedList = ∅; 
/*to store target goals, matched advertisement & services*/ 
 
unmatchedList = ∅; 
/*to store unmatched goals*/ 
 
/****Main Procedure****/ 
if ExactMatching(g) = true then 
     matchDegree=Exact; 
else if WeakExactMatching(g) = true then 

matchDegree=WeakExact; 
else if PlugInMatching (g) = true then 

matchDegree= PlugIn; 
else 

WeakPlugInMatching(); 
if unmatchedList = ∅ then 

matchDegree= WeakPlugin; 
else if (exactMatchedList≠ ∅ or 

 pluginMatchedList≠ ∅) then 
matchDegree= Subsumes; 

Example 5, if the user requirement R:{G2,G3,G4,G5} and 
the corresponding stratified rough set approximations are 
give in Table 1. List the recommendations: 
The recommended granules order by ? are:  
1. {�	} EFL/O     2.{�	} EFL/O     3. {��} EFP 
Remove duplicated granules and granules have existed in 
R. Following gives the final recommendations: 
 

Rank Recommendation Comment 

1 G7 Elements in Gd and 
remove G5 existed in R 

2 Gb,Gc,Gd Elements in Ga 
 

Example 6, travel agencies usually arrange tour for 
customer as a package including transportation and 
accommodation. They hardly sell flight tickets or hotel 
rooms individually. 
Given the goal model shown in Fig. 1, the service S 
provided by travel agencies is advertised as: A(S)={A1}, 
where A1={G1,G2}, �1 ≝ (�����

, R����8��������) 
and �2 ≝ (�����

, ����SS�	�����) . It implies that 
the execution of S will achieve {G1,G2} as a whole. You 
cannot achieve the goal G1 or G2 separately by the 
service.  
If a travel agency sells G1,G2 separately in addition to A1, 
the advertisement will be: 
A(S)={A1,A2,A3} 
where A1={G1,G2}, A2={G1} and A3={G2} 
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else 
matchDegree= Fail; 

end if 
end if 
 
/****Sub Procedures****/ 
ExactMatching(g) 
{ 
if exists a service S,  
T∃�� ∈ �(�)U({
} = �� ) then 

exactMatchedList.append(g, S); 
return true; 

end if 
 return false; 
} 
 
WeakExactMatching(g) 
{ 
 if g is not the atomic goal 

for each x in �(
) 
/*�(
) is the zooming-in operation defined in (2)*/ 
   if not ExactMatching(x) then 
     WeakExactMatching(x); 
   end if 

end for 
else 

unmatchedList.append(x); 
end if 
} 
 
PlugInMatching(g) 
{ 
if exists a service S,  
T∃�� ∈ �(�)U({
} ⊂ �� ) then 
/*{
}, �� ∈ 2� , 
⊂ relation can be judged by the definition (4)*/ 

pluginMatchedList.append(g, Ai, S); 
return true; 

end if 
return true; 
} 
 
WeakPlugInMatching () 
{ 
for each x in unmatchedList 

if PlugInMatching (x)=true then 
     unmatchedList.remove(x); 
end if 

end for 
} 

 
Above algorithm can be explained intuitively in 

granule approximations. These approximations can be 
classified into six types: {Exact, WeakExact, Plugin, 
WeakPlugin, Subsumes, Fail}. We borrow such 

measurements from the classic service matching 
algorithm [3] and add two additional metrics to describe 
matching degree. 
Exact. This is the perfect way to satisfy the granule g in 
user requirement. That is, we can find a service S, one of 
the advertisements Ai in A(S) is equal to {g}. 
WeakExact. Usually, we cannot always find a service 
perfect matching the requirement g. Since g can be 
decomposed into finer granules, we try to find a set of 
services satisfying each finer granule exactly. If there 
some granules still cannot be exactly matched, they would 
be zoomed in recursively up to atomic goals. Actually, {g} 
is the greatest element in the bounded lattice L(g) (see 
2.2). WeakExact matching is to find a partition $ ≼ {
}, 
and every element in $ is exactly matched. 
Plugin. Given a service S, Ai is an advertisement in A(S). 
If {
} ⊆ �� (see the definition (4) in 2.2), we call it as 
Plugin matching. 
WeakPlugin. If WeakExact matching fails, {
} has been 
refined as a partition $ in which all unmatched granules 
belong to A(g), i.e. these granules cannot be zoomed in 
any more. Then we try to find a Plugin matching for these 
unmatched granules. 
Subsumes. After WeakPlugin matching, if some granules 
are still unmatched, we say g can only be satisfied 
partially and call thus matching is Subsumes. 
Fail. If nothing matches. 

This algorithm produces three lists: exactMatchedList, 
pluginMatchedList and unmatchedList. In which, 
unmatchedList is used for exception handling for these 
unsatisfied goals; pluginMatchedList can be used for extra 
cost estimation for further decision. If we denote V(
) is 
the cost function (cost may be money, time, etc.) to 
compute the cost for achieving g, then extra cost can be 
estimated: 
Δ = X V(�. �	Z) − V(�. 
)

[\]
 

    ≅ ∑ V(�. �	Z − {�. 
})[\]                                         (12) 
where P represents pluginMatchedList, Adv represents Ai 
Plugin matching the target goal g ({
} ⊆ ��, �� ∈ �(�),  
S is the matched service).  

Other granules in requirements ℝ can use the same 
algorithm to find services. Finally, we obtain a set of 
services satisfying each granule in ℝ 
 

IV. AN ILLUSTRATIVE EXAMPLE 
 

Let us consider the domain “Travel Planning”. If the 
goal model of this domain is depicted in Fig. 2, we obtain 
all granules: 
G={Ga,Gb,Gc,Gd,G1,G2,G3,G4,G5}, where 
Ga:{Plan, Travel},  
Gb:{Arrange, Transportation }, 
Gc:{Arrange, Accommodation },  
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G1:{Book, FlightTicket},  
G2:{Register, Luggage}, 
G3:{Arrange, LocalTranportaion}, 
G4:{Reserve, Hotel},  
G5:{Rent, Apartment}, 
G6{Query, Weather} 

If a user submits a request: “I want to book a flight 
ticket and reserve a hotel room”, by some NLP method 
[16], it is formalized as the initial requirement, R:{G1,G4}. 

Construct all possible partitions P(Ga) for the root Ga: 
$1: {��} 
$2: {��, ��, �6} 
$3: {�1, �2, �3, �4, ��, �6} 
$4: {��, �4, �5, �6} 
$5: {�1, �2, �3, �4, �5, �6} 

The corresponding order relation of the bounded lattice 
L(Ga) is: $5 ⊆ $4, $3 ⊆ $2 ⊆  $1 

Now we can compute the stratified rough set 
approximations for the given requirement R: 

 
Partition �8�::::: �8� Bnd ? 

$1 {Ga} ∅ {Ga} 0 
$2 {Gb,Gc} ∅ {Gb,Gc} 0 
$3 {G1,G4} {G1,G4} ∅ 1 
$4 {Gb,G4} {G4} {Gb} 1/4 
$5 {G1,G4} {G1,G4} ∅ 1 

 
The recommended granules order by ? are:  

1. {��} EFG/L 
2. {��, ��} EFP 
3. {��} EFP 

Add them into an ordered list: {1:Gb, 2:Gc, 3:Ga}. 
The duplicated recommended granules should be removed 
when adding to the list, such as adding Gb in the second 
time. Then, the recommendations will be returned to the 
user: 

 
Rank Recommendation Comment 

1 G2,G3 Elements in Gb and 
remove G1 existed in R 

2 G5 Elements in Gc and 
remove G4 existed in R 

3 Gb,Gc,G6 Elements in Ga 
 
From the recommendations, the user finds that he also 

desires to achieve following goals not included in R:  
G2:{Register, Luggage}, 
G3:{Arrange, LocalTranportaion} 
G6{Query, Weather} 

Besides, the user prefers renting an apartment to 
reserving a hotel room. So he removes G4 and adds G5. 
The refined requirement becomes: R:{G1,G2,G3,G5,G6}.  

Using this new R, the user continues to clarify his 
requirement in second round: 

Partition �8�::::: �8� Bnd ? 
$1 {Ga} ∅ {Ga} 0 
$2 {Gb,Gc,G6} {Gb,G6} {Gc} 4/6 

$3 {G1,G2,G3 
,Gc,G6} 

{ G1,G2,G3,
G6} {Gc} 4/6 

$4 {Gb,G5,G6} {Gb,G5,G6} {Gb} 1 

$5 {G1G2,G3, 
G5,G5} 

{G1G2,G3, 
G5,G5} ∅ 1 

 
 In this round, the user no longer wants to do any 

change. Two definable approximations are obtained, 
which represent the clarified user requirement in different 
granularities: {Gb,G5,G6} and {G1,G2,G3,G5,G6}. If the 
user prefers that a service provider can arrange 
transportation for him as a whole, then {Gb,G5,G6} 
should be chosen as the final clarified requirement ℝ. 

Assume all services and corresponding advertisements 
related to this domain are listed below: 
S1: A(S1):{{Gb,Gc}} 
S2: A(S2):{{G6}} 
S3: A(S3):{{G1,G4}} 
S4: A(S4):{{G3,G4},{G5}} 
S5: A(S5):{{G2}} 

For granule Gb in ℝ, it cannot find a service with a 
Exact matching degree. We zoom in Gb by the operation 
�(��), then we obtain a finer granules set {G1,G2,G3}. 
{�2} ∈ �(�5) , so S5 can satisfy G2 exactly. {�1} ⊂
�(�3), {�3} ⊂ �(�4), hence S3, S4 are Plugin matching 
for G1 and G3 respectively. Since all granules in �(��) 
are matched, we can say Gb is a WeakPlugin matching 
with the retrieved services: {G1:S3:Plugin, G2:S5:Exact, 
G3:S4:Plugin}. Furthermore, it is easy to see S1 is a 
Plugin matching of Gb. Then we have two solutions to 
satisfy Gb:  
WeakPlugin Solution:  

{G1:S3:Plugin, G2:S5:Exact, G3:S4:Plugin} 
Plugin Solution:  

{G1:S1:Plugin } 
To determine which solution is better, we can quantify 
them by computing the extra cost (using the extra cost 
function defined in (12)) for those plug-in matched goals 
for each solution: 
Δ`bcdefghij = V({�1, �4} − {�1})

+ V({�3, �4} − {�3}) = 2V({�4}) 
Δefghij = V({��, ��} − {��}) = V({��}) 

The cost can be estimated the by historical data. 
Assume 2V({�4}) > V({��}) , namely Δ`bcdefghij >
mefghij, we can say that the Plugin solution is better than 
WeakPlugin one. Therefore, S1 is the best candidate to 
achieve Gb. 

Similarly, {�5} ∈ �(�4), {�6} ∈ �(�2), so S4 and S2 
are Exact matching of G5 and G6 respectively. 

Finally, services retrieved to satisfy ℝ are returned to 
the user: {Gb:{S1}, G5:{S4}, G6:{S2}} 
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V. CONCLUSION 
 

In this paper we pay no attention to improving the 
precision of service discovery with a given request, but 
try to help clients to clarify their initial imprecise 
requirement in a multi-layer goal model. Each goal in the 
goal model is regard as a granule, and these granules 
cover requirements in various grain sizes. According to 
such hierarchical granulation, granular computing and 
rough set theory are employed to handle uncertainties, 
which distinguishes what has been definable and what is 
still uncertain. The iterative clarification process is to do 
four kinds of operations in the stratified rough set 
approximation space and produce a clarified requirement 
with a client desired granularity at length. Finally, a 
matching algorithm is provided in basis of six types of 
granule approximations, which deals with the matching 
process in the granular computing view.  

We believe that the combination of granular 
computing and rough set theory will lead to many new 
methodologies for problem solving in service computing. 
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