2012 IEEE Asia-Pacific Services Computing Conference

A Service Intermediary Agent Framework for Web Service Integration

Jian Cao
Dept. of Computer
Science and Engineering,
Shanghai, China
Cao-jian@cs.sjtu.edu.cn

Jie Wang
Dept. of Civil and
Environment Engineering,
Stanford, USA
Jiewang@stanford.edu

Abstract—Because web services and agent technology can help
each other, to integrate them together is becoming a trend.
Most of current research works focus on developing an
integration framework to provide gateways that can connect
the agent and web service worlds. In the paper, the service
intermediary agent is proposed as a value-added professional
service provider, which can manage a group of inherently
related Web services. It organizes Web services as a set of
plans and reacts to the requests by selecting and executing the
appropriate plans. In order to process the incoming requests
intelligently, the semantic goal structure is employed to
facilitate plan organizing and plan selecting. The structure of
the service intermediary agent and its working process are
given. The semantic goal structure together with the
deliberation process is given. The case study and experiments
are also provided.

Keywords-Web Service; Service Intemediary Agent; Plan

1. INTRODUCTION

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network
[1]. Tt is based on a set of well- recognized standards like
SOAP [2] and WSDL [3]. The Web service is expected to
bring forth the next paradigm for the construction of
information system, which relies on dynamically service
discovering and composing. Unfortunately, current web
service technology cannot realize this vision yet. Some
deficiencies are: (1) It is very difficult to search an
appropriate web service in terms of the requirements and
understand its specification automatically in the open
environment; (2) The web service cannot manage its
behavior in an autonomic way [4]. For example, it cannot
self-optimize its behaviors; (3) The web service can not
differentiate requirements to offer customized service [5]; (4)
Web services cannot collaborate with each other directly.

An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through actuators [6]. The concept of agent is
now broadly used not only as a model for computer
programming units but also in a more abstract and general
way, as a new metaphor for the analysis, specification, and
implementation of a complex software system.

978-0-7695-4897-5/12 $26.00 © 2012 IEEE
DOI 10.1109/APSCC.2012.9

Liang Hu
Dept. of Computer
Science and Engineering,
Shanghai, China
milkrain@qq.com

Rujie Lai
Dept. of Computer
Science and Engineering,
Shanghai, China
rujielaisusan@gmail.com

To integrate web services and agent has becoming an
important research direction for both agent technology and
web service technology [7]. A web service should be able to
invoke an agent service and vice versa. Some papers
proposed a web service should be developed as an agent, for
example, a tool developed by MTA SZTAKI can transform a
web service into an agent [8]. However, the agent generated
from a web service only has limited functions [9]. In other
work, an agent is deployed as a web service when service
endpoint is added [10][11]. But this approach only adds
another communication port to the agent and exposing agent
capabilities as a fixed set of services also restricts the agent
reactiveness in some degree.

In this paper, a framework called Service Intermediary
Agent (SIA) is proposed as a way to integrate web services
for providing value-added professional services. It can select
or compose appropriate web services to respond to the
outside requests not only from the functional view but also
from the qualitative view. The SIA’s inherent knowledge
base can be expanded and optimized so that its capability can
be improved continuously. In addition, SIAs can cooperate
with each other to satisfy the complex requirements. From
the architectural view, the SIA is highly scalable since it can
manage a large set of web services. We believe SIAs can
form a common infrastructure to support web service
collaboration in the future service world. This paper
discussed how a SIA could organize the web services to
react to requests accordingly.

This paper is organized as following. Section 2 briefly
introduces the concept and the structure of a SIA. The
execution mechanism of the SIA is explained in Section 3.
The plan model for web service integration is introduced in
Section 4. Section 5 discusses the way of plan selection for a
request. Section 6 presents a case study and discusses some
implementation issues. Section 7 introduces the related work
and finally, Section 8 concludes the whole paper.

II.

With the prevailing of web services, it is anticipated that
an IT system can be constructed by discovering and
composing web services on demand. But web service
discovery and composition are difficult tasks because special
knowledge is needed during this process.

THE SERVICE INTERMEDIARY AGENT MODEL

IEEE
computer
pSOC|ety



A SIA can offer value-added professional services since it
has been equipped with the knowledge to organize, select
and invoke it’s managed web services. For example, an air
ticket booking SIA knows how to book a ticket from various
air companies through web service invocations and it also
knows how to select one flight according to a passenger’s
cost requirements and other preferences.

Building an intelligent software agent is a difficult and
time-consuming task that requires an understanding of
advanced technologies such as knowledge representation,
reasoning method, network communication methods and
protocols, etc. Some companies or organizations delivered
agent development tools such as JADE [10] and Agent
Builder [12]. Although these tools can also help develop
agents for web service integration, great manual
programming efforts are still required because they do not
provide any direct supports for web service integration.

Fig.1 shows the inherent structure of a SIA. It is based on
BDI (Belief, Desire and Intention) concept [13], which is a
software model developed for programming intelligent
agents. In the SIA, beliefs represent the current states of an
agent’s internal and external worlds and are updated as new
information about the worlds is received. A desire is a goal
that the agent tries to perform some actions to achieve. And
an intention is an agreement to associate the desire with
behaviors, which is further be defined as a set of actions or
plans.

According to the BDI concept, the structure of the SIA is
divided into three parts: a Belief Model, a Control Model
and an Execution System.

The belief model can be further divided into a World
Model (WM), a Neighbor Model (NM), a Constraint Model
(CM) and a Service Model (SM). The WM records the
agent’s inherent and environment states. The NM defines
the other ones this agent will cooperate with. The CM
consists of a set of constraints, which should be maintained
by this SIA. The SM maintains a set of internal functional
components and outside web services which are all regarded
as different types of services.

The world model can be defined as WM=<WS, WI>,
where WS stands for the data structure of the world model
and WI is the instance of this data structure. WI can be
further divided into GWI and LWIS, where GWI stands for
the global world instance and LWIS includes a set of session
world instances. Each local session world instance is
associated with a session that is created for a specific task.
Therefore, the LWIS is defined as {<LWTI,, Session>| i=1, 2,
...}. A new session can be created when the agent receives a
request that consists of a serious of interactions and be
destroyed when this interaction is completed. In this way, a
SIA can process multiple interactive requests concurrently.

SIA has a goal model defined in its structure. The plan
library includes a set of plans, which define the behaviors
that can achieve the goal. Web services are integrated into
the SIA as plans.

Belief Model

Constraint Model || Neighbor Model

Service Model World Model

Execution System

g

State Monitor Message Processor

Goal Goal

Scheduler

Deliberator

Plan Execution Service Execution

Control Model ﬁ [E
Goal Model Plan Library
Figure 1. The Service Intermediary Agent Structure

The execution of the SIA relies on an execution system
that is composed of several sub-components. The detail is
introduced in the next Section.

III. THE WORKING MECHANISM OF THE SERVICE

INTERMEDIARY AGENT

As an agent, the SIA should monitor the inside and
outside changes, make decisions and take actions
accordingly. The SIA takes advantage of a goal-oriented
model to support its execution. And in order to make the
SIA scalable, ontology is adopted for goal modeling.

Ontology is an explicit specification of a
conceptualization and its importance has been well
recognized [14]. The ontology applied in the SIA is
structured as a set of individual generalization hierarchy
terminology trees, with the more abstract concepts of the
ontology forming the root terms of which other terms are
specified. Each term of the hierarchy may be associated
with a number of named attributes. Attributes are specified
with an attribute name and type. Examples of built-in
primitive types include Boolean, string, byte, integer, and
real number. The complex types can be terms defined in
other term trees. Attributes of a term are inherited by all of
its children, which may have additional attributes.

If a term a is inherited from a term b, a specializes b and
it is denoted as a&SP«(b). Accordingly, b generalizes a and
it is denoted as bEGE(a). The relationships of
specialization (or generalization) are transitive. For
example, if c€SP(a) and aESP«(b), then cESP(b).



] Actiea

1..1
1..% P |
s -
k § y
Goal L Target
;P 1 {ab=tract} _‘1”1 = I
S ek -
: U
T Tar  S———
Lond =™ > Lo © 1.
e e T —
. =
FequirementGoal OperationGoal
0...1 e
0. .* o.. o =
\y % N 0% oo -t
QualitrFxpectation Input Ontprmt FPrecondition Effect Qualitr
i : P | -1 A
1..% 3 | 0,.( 1‘ :

b J . . 2y
Wu=litrFactors| HardCons traint | |@ualitrFvaloatFonc QualityFactor
- Cost - Cost
— e = Time
- Trust - Trust

Figure 2. Goal Structure

For two sets 4 and B, if VbEB, Ja,€EA, a=b; or
a\ESP(by), then A specializes B and it is denoted as
ACSP(B). If A% B, then denoted as ACSPy(B).

A.  The Semantic Goal Model

When an outside request is received, an agent should
decide the action it should take. This is often achieved
through a goal deliberation process in a cognitive agent.
There are many research works on goal modeling in recent
years. In these works, goals can be roughly divided into two
types, i.e., declarative goals and procedure goals.
Declarative goals are about situations or states, and
procedural goals are about actions. In the SIA structure, the
concept of procedure goal is adopted.

In related work, a procedure goal is often described as a
string. As a service broker, the SIA should be able to
differentiate similar web services and organize them
according to not only the functional requirements but also
qualitative requirements. Current goal representation in
agent is not enough for the SIA due to following reasons:

® Goal representation is too simple: Request coming from
outside is often very complex and consists of multiple
aspects. For example, a weather information query
request can be based on zip code or city name;

® (Quality information is not included in the current goal

representations: A quality specification concerns how
well the service offering might be. Quality requirement
can be represented as an expectation on overall quality

16

score. In addition, constraints over one or more quality

factors are often specified.

More relational types among goals are required:

Generally, goals and their relationships can be

described as a predefined AND/OR graph. In this

graph, depending on the decomposition type, all (for

AND) or at least one (for OR) of the sub-goals has to be

implemented to satisfy their parent goal. The goal

deliberation of the agent is a process traversing the goal
graph to decompose an abstract goal into a set of sub-
goals that can be satisfied by executing plans directly.

Since new plans to integrate web services can be added

into the SIA, the fixed goal graph is difficult to adapt to

the ever-expanding web service integration plan set.
In order to extend the goal representations, the goal
model of the SIA is defined based on ontology so that the
generalization (or specialization) can be inferred according
to their definitions.

The definition of a goal is shown in Fig. 2. The goal
includes an action, a target and the way. Goals are divided
into requirement goals and operational goals. Requirement
goals are those an agent tries to satisfy. It includes quality
expectations, which consists of quality factors, constraints
and a quality evaluation function. The default quality factors
include time, cost and reliability. An operation goal
represents the function and quality that a plan can achieve.
Its specification also has inputs, outputs, preconditions and
effects.

There are two relationship types among goals:



1. Decomposition Relationship

A goal g can be decomposed into several sub-goals
G’={gi, &, ..., gn} and each sub-goal g=SubOfig) (=1, 2,
..., m) will contribute to the partial fulfillment of g. For the
goal g, a sub-goal g; can be optional or indispensable.

® AND(gi, g, ---,» gn): In order to satisfy goal g, all goals
should be satisfied.
® OR(g, g, ..., gn): In order to satisfy goal g, one of

goals is selected to be satisfied.
2. Generalization (Specialization) Relationship

If goal g; can be satisfied by realizing another goal g,
then we call g, specialize g; and denote it as g,&ESP,(g)).
Accordingly, we can call g; generalize g, and denote it as
8IEGEL(g>).

If verb(g;) is different from verb(g,) then their
specialization relationship should be defined explicitly. If
verb(g;)=verb(g,), then specialization relationship can be
determined using the following reasoning mechanisms:
Suppose a goal g, where verb(g)=v and target(g)=t with
parameter set P=(p,, po,..., p,) and a goal g’, where
verb(g’)=v and target(g)=t’ with parameter set P’=(py, pa,...,
DPise-+» Pm)- If £ESP(f) or £=t, and for Vpv(p;, g°), pv(p;
2 )CSP(pv(p;, g)), then g’ specializes g. The specialization
relationship among goals can be inferred from the
specialization relationships of the corresponding action,
object and way.

B. The Goal Deliberation Process

When a request is received, a goal deliberation process is
started. This is triggered according to a request and goal
association rule, which is denoted as R—GA. R is a request
type definition. G4 can be a rule defining how to generate
the requirement goal according to the contents of a request.

The goal generated by the G4 can be a high-level one.
Through the deliberation, a requirement goal can be
decomposed to a set of sub-goals, for which a set of plans
are defined to implement them. The goal generated by the
GA can also be a low-level goal for which plans can be
found to implement it directly.

IV.

When a request is received, the SIA tries to organize and
execute plans in response to it. Therefore, on the one hand,
information should be attached to a plan supporting the
selecting process. On the other hand, a plan should define
the way to organize services. The former one is called
semantic model that is based on operational goal annotation,
the later one is called syntax model, which can be
represented as a set of logic flows and data flows among
activities.

PLAN MODELS FOR WEB SERVICE INTEGRATION

A.  Goal Annotation for the Web Service Integration Plan

When a web service is integrated into the SIA as a plan,
the operational goal should be annotated to this plan. It is a
difficult task if it is done manually. We designed a semi-

automatic framework to annotate the operational goal to the
web service integration plan.

The WSDL file is a universally supported interface to
describe web services. Consequently this framework takes
the WSDL files as corpora to automatically generate
operational goals. This process is composed of 4 steps:

1. WSDL Parsing

In this step, the operations, inputs, outputs and schema
types are extracted.

2. Raw Information Processing

Because web service is a software component, operation
and parameter naming often follow some naming
convention in programming, for example, abbreviation or
adding prefix. Therefore, we process the information
extracted from WSDL in three steps: segmenting text
according to the rules in terms of Pascal or Camel
convention, striping the prefix or suffix, and expanding the
abbreviations according the dictionary.

3. Natural Language Processing

In this step, information is extracted to fill the structure of
goal so that an operational goal instance is created. Since the
WSDL documents are used for interoperation so that they
are always named in accordance with some patterns. Once
the pattern is identified, the correct mapping rules can be
applied to extract syntactical elements for semantic
attributes.

It is feasible to identify pattern and extract semantic
information from syntax tree. In order to match patterns in
syntax tree, our automation framework adopts Tregex [17]
which is a kind of tree pattern expression extended Tgrep2
[18]. A two-stage pattern based approach is designed to
extract semantic information from the natural language text.
The first stage is to discriminate the syntactic pattern it
belongs to, and the second stage is to extract phrases from
the discriminated syntax structure.

4. Ontology Alignment

After the above three steps, the structure of goal has been
filled. But the phrases may not be standardlized. In order to
find the most matched ontology for these words or phrases,
SPARQL based ontology alignment is applied. ARQ [19] is
an implementation for SPARQL standard, which provides
two kinds of extension methods (a) Filter Function (b)
Property Function. In our system, we mainly extended the
property function to integrate the capabilities of string
normalization, similarity algorithms, similarity measure
strategy and match strategy into the SPARQL statements.

The above method extracts the information according to
the goal structure. It needs to be justified, modified or
completed. The initial quality information can be defined
when a web service is added to the SIA. But it can also be
updated according to the message or updated periodically
according to the statistic information by itself.



B.  The Syntactic Model for the Web Service Integration
Plan

A web service integration plan model should define the
logic and the sequence of the relevant data flow among
service invocation activities.

A plan model is defined as <S, RA>, where S, is the
activity set; RA represents relationships among the
activities. RA=DFULF, where DF and LF are data flow set
and the logic flow set respectively.

An activity can be in one of the following states: waiting,
ready, running, completed, overtime, failed and aborted.
When an activity changes its state from one to another, an
atomic event happens. The content of each activity in the
model can be specified as an internal service or a web
service. When the state of an activity becomes ready, a
service invocation goal Initialize(Activity(“A ")) is produced.
In addition, the content of an activity can also be a
requirement goal which is called abstract activity.
Accordingly, the plan including one or more abstract
activities is called abstract plan. Before the abstract plan can
be executed, all abstract activities should be matched with
plans through a goal deliberation process.

V.

In generally, plan selection can be divided into two steps.
The first step is to select the plans through the goal
deliberation procedure. The second step is to decide which
solution is the best according to quality requirements.

The quality of a plan can be calculated based on the
quality information of each service in the plan.

Suppose 4; is an activity of a plan and it’s time, cost and
reliability are T}, C; and R, respectively. Since a plan can be
constructed through a set of standard blocks iteratively, we
only need to figure out how to calculate the quality
information of typical block types:

1. Sequence Block:

T.=3T.C.=3CR,~[|R
2. Parallel Block:
T, = Max(T,. Ty T,).C, = ZCJ’R» = Min(R, R, R)
3. Alternative Block:
(suppose the possibility of executing activity 4; is ¥;)
XV T= 3Ty -Com 3 Cr YR [RY,
For a requirement goal, the algorithm to select the best
plan is as following:

PLAN SELECTION

Algorithm1:
chooseOptimalPlan(RequirementGoal rG, PlanSet PlanS)
{ //The candidate set of operational goals
candidateSet=null;
//Plan selection according to semantic information
For each plan in PlanS{
oG=operationGoal(plan),
if 0GESP,(rG) add oG to candidateSet;}
//Hard constraints checking
parseRG_HardConstraint(rG),

for each oG in candidateSet {
if(misMatch(oG.quality, rG.hardConstraintFunc)){

remove oG from candidateSet;}
1

s
//Select the best one according to the quality score
parseRG_QualityEvaluationFunction(rG);
MAX—-o0;
planID«0;
for each oG in candidateSet{
/[Fe is a quality score function
If (Fe(oG.quality)>MAX){
MAX«—Fe(oG.quality);
planlD«getPlanID(0G);}

}
return planiD;

In most cases, feasible plans cannot be found to achieve a
requirement goal directly so that a deliberation process is
started to generate feasible plan set.

The deliberation process will generate an AND/OR tree
graph called planGraph in terms of the original goal graph
and the plan set. The algorithm is as following:

Algorithm?2:

Suppose rG is the root of the planGraph and requirementGoalSet is an
empty set:

deliberationProcess(RequirementGoal rG)

{
if G is an AND-decomposed node in goal graph {
append all sub-goals of rG to the sub-nodes of node(rG) of
planGraph as AND-decomposed nodes;

if G is XOR-decomposed node in goal graph {
append all sub-goals of rG to the sub-nodes of node(rG) of
planGraph as OR-decomposed nodes;
¥

insert sub-goals of rG into requirementGoalSet,

if G can be achieved by executing a plan {
select all feasible plans according to semantic information and
append them as OR-decomposed sub-nodes of node(rG) of
planGraph;
remove rG from requirementGoalSet,;

}

if requirementGoalSet is not empty {
bring one requirement goal G, from requirementGoalSet,
deliberationProcess(rG);

Feasible solutions can be extracted from the planGraph
easily: for a node selected, if it is AND-decomposed type,
it’s child nodes are all selected. If it is OR-decomposed
type, one of it’s child nodes is selected. A feasible solution
consists of all selected bottommost plan nodes. We can
regard the selected plans as the activities of a parallel
structure and the quality can be calculated accordingly.

When an abstract plan is found, a planGraph also needs
to be generated. In this planGraph, the root represents the
abstract plan and a set of AND-decomposed type sub-nodes
are appended. Each sub-node represents the requirement
goal of an abstract activity. Furthermore, these requirement
goals can be deliberated according to Algorithm?2 so that the
planGraph can also be expanded.



VI. CASE STUDY AND IMPLEMENTATION

A. Case Study

Suppose we want to develop a SIA for providing weather
information service, which is named as
WeatherInformationService Agent. In this agent, four web
services are registered. Their operation goals are defined as
following.

Operation | Operation | Operation | Operation
from from from from
WS] WSZ WS3 WS3
Action Query Query Query Query
Target Weather Weather Weather Wind
Info. Info. Cond. Info.
Way(Param | Zip Code | Country Country Country
eter) City City City
Time(ms) 10 8 10 10
Cost 0 0 0 0
Reliability 0.9 0.85 0.9 0.9
Accuracy 8 8 9 9
Integrality 7 7 5 5

Besides default quality factors, two extra quality factors
including accuracy and integrality are also defined. The
accuracy means the precise of weather information, which is
represented as an integer ranging from 0 to 10. The
integrality means how many days it can predict and it is
assigned an integer ranging from 1 to 7.

Four web service integration plans are defined in
WeatherInformationService Agent. Plan 1 is defined for
integrating the operation of WS, and it includes three
activities, one for obtaining Zip Code from message, the
second for invoking web service and the third for
composing the return message (configureReturnMessage
activity). The other three plans are similar. They all include
two parallel activities, one for obtaining the country name
(setCountryNameValue activity) and the other for obtaining
city name (setCityNameValue activity) from the message.
After these two activities, the web service operation is
invoked. And the last activity is for composing return
message. Their graphic models are shown in Fig. 3.

EEX

T e e —
Tile Vier hoslication SchmaHalp
DExR33A8

Thgmt M| [ GottasthertLant

ccececrrRJIFLRGW - I M

< >

Figure 3. Plan Model for Web Service Integration

The semantic information can be added to the plan, for
example, the semantic information of plan; is specified as
following:

<Planl>
<OperationGoal>
<Action>Query</Action>
<Target>WeatherInformation</Target>
<Way> <Parameter>Zip Code</Parameter></Way>
<Quality>
<Time value = "10"/>
<Cost value = "0"/>
<Reliability value = "0.9"/>
<Accuracy value = "8"/>
<Integrality value = "7"/>
</Quality>
</OperationGoal>
</Planl>

In order to let the agent be able to process the weather
information query request, a requirement goal generation
rule is defined for this query message. The rule file is:

global edu.sjtu.grid.agent.modeling.model.goal.RequirementGoal rg;
rule "Parse_GetWeather IncomingMessage ByCCName"
when
event: MessagelncomingEvent (messageTemplate ==
"GetWeather" , inputParameters contains "City", inputParameters
contains "Country" , qualityExpectationMap:qualityExpectationMap,
agentID : agentID, eventID : eventID)
then
rg.setAction(new Action("Get"));
rg.setTarget(new Target("Weather"));
rg.getWay().getParameterList().add(new
Parameter("'CityName"));
rg.getWay().getParameterList().add(new
Parameter("CountryName"));
rg.setQualityFactors(qualityExpectationMap);
rg.saveRequirementGoallnDB(agentID, eventID);

Through a rule engine (in our case, Doorls is used as the
rule engine), the message is translated into the requirement
goal as following:

<RequirementGoal>
<Action>Query</Action>
<Target>WeatherInformation</Target>

<Way>
<Parameter>Country Name</Parameter>
<Parameter>City Name</Parameter>
</Way>
<QualityFactors>
<QualityFactor name = "Time"/>
<QualityFactor name = "Cost"/>
<QualityFactor name = "Reliability"/>
<QualityFactor name = "Accuracy"/>
<QualityFactor name = "Integrality"/>
</QualityFactors>
<HardConstraints>
<Constraint>
<Operator value = "LT"/>
<Factor value = "Time"/>
<Value value = "10"/>
</Constraint>
<Constraint>
<Operator value = "E"/>
<Factor value = "Cost"/>
<Value value = "0"/>
</Constraint>
<Constraint>
<Operator value = "EGT"/>

<Factor value = "Reliability"/>

19



<Value value = "0.9"/>
</Constraint>
</HardConstraints>
<QualityEvaluationFunction>
Time* (-0.2)+Reliability*0.3+
Accuracy*0.25+Integrality*0.2
</QualityEvaluationFunction>
</RequirementGoal>

According to the goal representation, either of plan; and
plan, can achieve the requirement goal directly. According
to the goal relationships,
Query(WeatherInformationy)=AND(Query(WeatherConditio
ns), Query(WindInformation)), this requirement goal can
also be achieved by executing plan; and plan,. Fig. 6 is the
planGraph constructed.

Query(WeatherInformation)

Figure 4. The planGraph for Query Weather Information

From the planGraph, we can obtain the solution set:
{<plan,>, <plany>, <plans, plans>}. Since plan, violates the
quality constraint (Reliablity=0.9), it is excluded.

The quality score of plan, is:
10*(-0.2)+0.9*0.3+8*0.25+7*0.2=1.67
The quality score of < plans, plans> is:
10*(-0.2)+0.9*0.3+9*0.25+5*0.2=1.52
Consequently, plan, is selected.

B. Implementation

Our implementation of SIA platform is based on Java. It
consists of an agent modeling tool, an agent container and
an agent directory.

Agent modeling tool is a graphical environment that
allows user to build an agent in an interactive way. Fig. 5 is
the tool to annotate the operational goal for a plan. Fig. 6 is
the tool to define the data mapping relationship between
world model and service operation’s parameters for a plan.
Agent specification is saved as an xml file. It can be
deployed into containers through web services and at the
same time it is registered into the directory.

Agent container is a distributed environment supporting
agent running and communication. Currently, it is built on
JADE environment.

20

=3 Update Plan Operation Goal

Basic Information Input & Output] PreCond & PostCond | Quality Information
Input & Output
Input Ontology

Value
Worldiodsl
WorldModel

Hame
GetWsatherXMLDocument

InputID
Inputl
Input2

Output Ontology

Dutput
Outputl
Output2

Outputd
OutputS
Outputh

|

Figure 6. Data Mapping Relationship Modeling Tool for a Plan

VII. RELATED WORK

Because web services and agent technology can help each
other, to integrate them together is becoming a trend.

In order to let the agent can call web services, some tools
can generate a JADE proxy agent for an existing web
service so that other agents can send ACL(Agent
Communication Language) requests to the proxy agent
[8][20]. In other works, the capabilities of an agent can be
exposed as web services [10][11][20]. For example, the
WSAG [20] manages the transition from agents to web
services and the Generator is a support tool for generating
agents that operate within the Gateway providing a concrete
Web service interface for a particular external agent. All
these efforts focus on connecting agents and web services.
The service intermediary agent manages a group of web
services and it can offer value-added services to the outside
based on it’s internal knowledge.

Some research groups also proposed the the agent model
which can manage multiple web services. For example, in
RACING framework, agent can mange several web
services, and they can negotiate with each other to compose



web services [21]. These works try to make use of multi-
agents to solve particular problems such as web service
selection or web service composition. Comparing with these
works, the service intermediary agent is a more general
framework and it provides the general approach to integrate
and manage web services. These features make STA become
a general framework which can produce different type
service agents for a domain. These agents can be an
important part of service collaboration infrastructure.

VIII. CONCLUSIONS AND FUTURE WORK

In order to improve the current web service technology, a
framework called service intermediary agent is introduced
in the paper. The SIA can provide value-added professional
service based on management of a group of inherently
related web services. A SIA can also extend and optimize its
inherent knowledge to improve its service level
autonomously. In addition, SIAs can cooperate with each
other to satisfy the outside requirements jointly. We believe
these features make service intermediary agents form
important parts of the service collaboration infrastructure,
which is very important to build an open service computing
environment. This paper figured out the structure and
working mechanism of the SIA and there are many research
issues still waiting for investigating. The future work will
focus on but not limit to:

. Design  collaboration
intermediary agents;

*  Try to provide self-leaning algorithms to optimize the
SIA’s plan set;

*  Explore how to incorporate web services into the SIA
from outside automatically.

mechanism  for  service

ACKNOWLEDGMENT

The paper is partially supported by China National
Science  Foundation (Granted Number: 61073021,
61272438), Research Projects of STCSM (Granted Number:
11511500102).

REFERENCES
Booth, D., Haas, H., McCabe, F., et al, Web Services Architecture,
http://www.w3.org/TR/ws-arch/, 2004.2
W3C, SOAP Version 1.2, http://www.w3.org/TR/SOAP/, 2007.4

Christensen, E., Curbera, F., Meredith, G. et al, Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
2001.6

S
N

21

(4]

[5]
(6]

(7]

(8]

[9]

[10]
(1]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

(21]

Papazoglou, MP, Traverso, P., Dustdar, S., et al, Service-Oriented
Computing: State of the Art and Research Challenges, IEEE
Computer, 2007, 40(11): 38-45

Cao, J.,, Wang, J., Law, K., et al, An Interactive Service
Customization, Information and Software, 2006, 48(4): 280-296

Russell, S J., Norvig, P., Artificial Intelligence: A Modern Approach
(2nd Ed.), Prentice Hall, 2003

Huhns, M., Singh, M., Burstein, M., et al, Research Directions for
Service-oriented Multi agent Systems, IEEE Internet Computing,
2005, 9 (6): 52-58

Liu, S., Kiingas, P., Matskin, M., Agent-Based Web Service
Composition with JADE and JXTA, In Proceedings of the 2006
International Conference on Semantic Web Services, Las Vegas,
Nevada, USA, 2006.1.1: 110-116

Ian Dickinson, Michael Wooldridge, Agents are not (just) Web
Services: Considering BDI  Agents and Web  Services,
http://www.hplLhp.com/techreports/2005/HPL-2005-123.pdf, 2005.7

JADE, http://jade.tilab.com/, 2010.1

Greenwood, D., Calisti, M., Engineering Web Service- Agent
Integration, In Proceedings of IEEE Systems, Cybernetics and Man
Conference, Hague, Netherlands, 2004.1.1: 1918-1925

Agentbuilder, http://www.agentbuilder.com/, 2004.6

Rao, A. S., Georgeff, M. P., Modeling Rational Agents within a BDI-
Architecture, In Proceedings of the 2nd International Conference on
Principles of Knowledge Representation and Reasoning, 1991: 473-
484

Gruber, T. R., A Translation Approach to Portable Ontology,
Knowledge Acquisition, 1993, 5(2): 199-220

Chakravarthy, S., D. Mishra, D., Snoop: An Expressive Event
Specification Language for Active Databases, Data & Knowledge
Engineering, 1994, 14(1):1-26

Pietzuch, P. R., Shand, B., Bacon, J., A Framework for Event
Composition in Distributed Systems, In Proceedings of 4th
ACM/IFIP/USENIX International Conference on Middleware, Rio de
Janeiro, Brazil, 2003.6: 62-82

Levy, R., Andrew, G., Tregex and Tsurgeon: Tools for Querying and
Manipulating Tree Data Structures, In Proceedings of 5th
International Conference on Language Resources and Evaluation,

Genoa, Italy, 2006.5.22-28,
http://nlp.stanford.edu/software/tregex.shtml, 2006
Douglas L. T. Rohde, TGrep2 User Manual version 1.15,

http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf, 2005.10
ARQ, http://jena.sourceforge.net/ARQ/, 2009

Agentcities Task Force, Integrating Web Services into Agentcities
Recommendation, http://www.agentcities.org/rec/00006/actf-rec-
00006a.pdf, 2003

Ermolayev V., Keberle N., Plaksin S., Towards Agent-Based Rational
Service Composition: RACING Approach, In Proceeding of the
International Conference on Web Services Europe, Erfurt, Germany,
2003:
http://www.old.netobjectdays.org/pdf/03/papers/icws/28530167.pdf1
67-182



